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Abstract

The aim of this thesis is to describe how a neural network, here named BCPNN (Bayesian
Confidence Propagation Neural Network), which can be identified by rewriting of Bayes’
rule, can be used for data mining and classifications with credibility intervals in some
applications.

The aim of this thesis is to describe how a statistically based neural network technology
the BCPNN (Bayesian Confidence Propagation Neural Networks) can be used within two
different applications, data mining in a huge database and modelling of an industrial process.
BCPNN has previously been successfully used within classification tasks like fault diagnosis,
pattern recognition and hierarchical clustering analysis.

BCPNN is a neural network model reminding somewhat about Bayesian descision trees
which are being used within artificial intelligence systems. As a neural network the BCPNN
is rather different from backprop (BP) and other gradient methods. The learning process in
BCPNN is based upon calculations of probabilities and dependencies which is often a more
or less straight forward process compared to the usually time consuming iterative gradient
methods. The interpretation of weight values in a BCPNN is also rather easy compared to
interpretation of the weight values within a network which is trained by gradient methods.

When we say process modelling here, this refers to function approximation. A function
in the general sense may be considered a spatio-temporal outcome of a spatio-temporal
input. Function approximation in this sense is somewhat more complex than the modelling
we do in this thesis, as we don’t deal with time in those paper where we discuss process
modelling. To give a glimpse of the BCPNN being able to deal also with time there are two
papers included where we deal with some temporal aspects of BCPNN.

The most important results found in this thesis can be summarized in the following:
We show how a Bayesian Neural Network can be extended to model the uncertainties in
the collected statistics to produce outcomes as distributions from two different aspects:
uncertainties induced by sampling, which is useful for data mining; uncertainties due to
input data distributions, which is useful for process modelling. We show how complex
dependencies can be found within large data sets but still avoiding combinatoric explosion.
We show how these techniques have been turned into a useful tool for real world applications
within the drug safety area in particular. We compare some results of the BCPNN technique
with the well established non linear regression technique, BP (back prop networks), for
processing modelling, showing that the BCPNN performs at least equally well, but provides
extra information about uncertainties of produced outcomes. We present a simple but
working method for doing automatic temporal segmentation of data sequences. We indicate
some aspects of temporal tasks for which a predictive Bayesian neural network may be
useful. Showing how the connection matrix can be reduced due to regularities in the data.

Key words: Artificial neural network, Bayesian neural network, data mining, adverse drug
reaction signalling, process modelling
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Preface, a historical perspective

When we collect data samples of the world to obtain information and hopefully know-
ledge about it we hope that this knowledge will make it possible for us to create a better
world and to make ourselves and our products perform better. The samples we collect are
usually fit into some statistical model for data analysis and possibly prediction of future
outcomes. For a long time such statistical models were based upon what is often referred
to as the classical statistical theory. The work we present here is based upon the ideas
presented by Thomas Bayes and Marquis de Laplace. Bayes ideas [Bay63] were originally
published postumely in 1763 by Richard Price, two years after his death. Bayes ideas were
successfully used by Laplace who improved their mathematical appearance and showed
with some elegant examples on the power of this new probability theory. For example,
he used the probability theory to estimate the mass of Saturn. He actually computed the
probability density function (pdf) for the mass of Saturn given data, i.e. P(M|data,B),
where B is the background information, like laws of mechanics. He also stated that “it is
a bet of 11,000 to 1 that the error of this result is not 1/100 of its value”. He would have
won it! After 150 years later ackumulated data the estimations of the mass only changed
the original estimate by 0.63%. Laplace discussed his ideas in a popular form in his Essai
philosophique sur les probabilités 1814 (here referred to as [Lapl4]) and finally published
his analytical work Théorie analytique des probabilités within his collected work Théorie
1820. The probability methods soon become popular but unfortunately Bayes and Laplace
works were later allegedly discredited and mostly forgotten until they were rediscovered by
Jeffreys 1939 [Jeffreys, 1939] and has since then become inreasingly more and more popular.
Although Laplace did a great work turning Bayes ideas into useful mathematical stringency
the theory is nowadays called Bayesian probability theory to honour Bayes which came up
with the original ideas.

In the work we present here we use a neural network method based upon this Bayesian
probability theory for the data analysis (data mining) and process modelling (also predic-
tion and classification). We here refer to this network as BCPNN Bayesian Confidence
Propagation Neural Network.

Using classical statistical theory the data mining work, i.e. to find dependencies and
relations within the data, and process modelling, has been done with different approaches
and strategies. To find dependencies between variables, classical methods like the x2-test
were developed and for process modelling have different regression models been used. A
popular non linear regression method used lately is the error backpropagation network
which is here referred to as BP.

In the BCPNN both the data analysis and the process modelling are done within the
same framework using the same network for both purposes. We show here how such a
network deal with variable dependencies and how we can put a belief value not only on
the outcome of a variable but also on how significant this belief is. We also show how a
predicted outcome also gets a confidence measure when belief values are propagated through
this network.

In data mining, where we want to find dependencies between variables in a data base,
the measure of the confidence of this dependency is important when the number of samples
giving indications about it is small. This confidence not only makes it a useful tool for data
mining but also for prediction and classification, especially when we need to make low risk
decisions.
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2 SUMMARY

1 Introduction

This thesis deals mainly with the subjects data mining and process modelling using Bayesian
Confidence Propagation Neural Networks (BCPNN). Seen from a complexity level of the
functionality of the two tasks the process modelling issue is the most complex one. From this
point of view it is natural to start with the task about data mining, where an understanding
of the subject will help in understanding the task about process modelling, where a general
modelling will involve temporal processing as its ultimate goal.

Therefore, the thesis starts with a paper describing the theory on how weights and
confidence measures are generated in BCPNN Supplement I . The important contribution
of this paper is that it shows how we deal with uncertainties of the weights in the BCPNN
network and how this uncertainty is useful when doing data mining.

The paper in Supplement II describes a successful application where the data mining
technique described in Supplement I is used for data mining a huge data base, looking for
adverse drug reaction signals.

The paper in Supplement III tells how the BCPNN network is used for modelling pulp
quality in an industrial paper manufacturing process. The process modelling which is
presented here mainly deals with the problem of real valued function approximation with
confidence interval estimations. It should be stressed that what this network does is in
principle an association of an input density function with an output density, which makes
this method more powerful than any pure regression technique. The uncertainties which
are dealt with here are only the uncertainties of the data samples, not the uncertainties
of the weights within the network itself, which is addressed with in the previous paper
Supplement I .

Now when we have made it through the chapters describing how the weights in the
network are calculated and belief values are propagated we go into some temporal modelling
issues. The paper in Supplement IV gives an idea of one way the BCPNN network can be
used to handle the task of spatio-temporal function approximation which is an important
issue for any kind of general process modelling involving both prediction and control as well
as perceptive temporal tasks like speech understanding or the more speculative ones like
prediction of future interest rates.

In the next paper in Supplement V we make an attempt to cope with the subject of self
organizing temporal segmentation, which is an important issue when dealing with temporal
problems. A temporal segment can be seen as a piece of sequential information that is often
seen together and thus may have a certain meaning. The temporal segmentation problem
can in some sense be seen as a temporal equivalent to the data mining problem as described
in Supplement I .

The last paper in Supplement VI is included as a reference application for the process
modelling task presented in Supplement IIT . In this work is instead a non linear regression
model, the BP (error back propagation network) is used on mainly the same data set which
was used in Supplement III . It deals with the subject of designing a BP network for best
possible performance. It also discusses different methods to partition data into training and
test sets.

It may be noted that, although the presentation order of the papers in this thesis is
almost related to the complexity level of the task that we try to solve, the order is almost
reverse from the chronological order of the production of the papers as well as from the
level of my own understanding of the problem. The papers are instead presented in a more
or less logical order, except for the last one. The reason to put this paper last is that it
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is merely a reference and is not focusing on the main subject of the thesis, which is to use
BCPNN networks for the same problem.

2 On Data Mining

Data mining in one sense can be seen as the whole process of turning data into information
and knowledge, thus involving searching for patterns, investigate possible representational
forms, performing classifications, clustering, regression, function approximation, building
inductive trees, finding logical rules describing the dependencies within the data set etc.
[Fayyad etal., 1966]. We do, however, live in a world where probability theory is necessary
to understand all possible phenomenon in nature. Quantum physics, chemistry, economy,
medicine as well as information processing in the brain. In a way there are no hard rules
for anything, every possible process can be modelled from a probabilistic perspective.

Marquis de Laplace said “Strictly speaking it may even be said that nearly all our knowl-
edge is problematical; and in the small number of things which we are able to know with
certainty, even in the mathematical sciences themselves, the principal means for ascertain-
ing truth - induction and analogy - are based on probabilities” [Lapl4]. He indicated that
the entire system of human knowledge is connected with probability theory. Therefore, we
have here restricted the meaning of data mining merely to be the search for conditional
dependencies and patterns within the data set.

From a Bayesian point of view, knowing these dependencies, or more precisely, to know
the joint distributions for all events we are interested in is enough. Neither clustering or
classification has nothing more than a subjective meaning. In nature there are no classes,
no clusters, there are similarities but to define that something is similar we have to first
define a distance measure according some metric in the space we are interested in, which
is often a Hamming distance [Kanerva, 1988], an Euclidean distance or when we reason
about probabilities it is, however, most often a graded [0..1] feature probability space
[Kohonen et al., 1991].

Nevertheless, there are a lot of practical reasons to cluster and classify data. It is
fundamentally for us to organize data into classes to be able to make use of the information
therein. We should never forget although, that clustering and classification are graded
hierarchical processes that are just done for practical and subjective reasons.

Ok, now to the real subject of data mining with probabilities. First we have to find out
what we mean by a probability. Assume that we, for simplicity has a binary variable, like
a coin with head and tail. We throw this and count the number of occurrences for head=c;
and the number of occurances for tail=cq. This is a typical Bernoulli trial. By the classical
definition the probability p1, which is then the probability to get head, for an event to occur
is the ratio:

C1

p1 = lim
cotci—o0 cg + €

1)

From a practical point of view, a probability is something that can never be measured
exactly. To really find out the probability for a certain event we would have to repeat an
experiment an infinite amount of times, which is really not encouraging. Then for instance
to speak about a probability for something that has never occurred would be meaningless.
When doing data mining we also want to know how significant a certain connection found is.
We want to find some quality measure of how sure we are that there really is a dependency
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when we have found evidence of one. For certain applications we may also want to do that
a early as possible with as small data sets as possible, for instance to be able to give a
warning signal when we have found a relation which would be considered important.

Now, when using Bayes ideas there is hope. The Bayesian technique to calculate proba-
bilities starts with a prior distribution. Each new sample generates a posterior distribution,
which is used as the prior for the next sample. We assume that the probability p we are
looking for is just an unknown parameter with a distribution 8, then when we have a model
for this distribution we can find the unknown distribution by integrating over the unknown
parameter and normalize. It is, however, unclear exactly how Bayes himself did this calcu-
lation. It is traditionally accepted that Bayes assumed that the distribution 6 was a priori
uniform in [0, 1] [Geisser, 1993], hence the posterior density of € is:

p(fn) o« 7(1 — )N

We do not know for sure if Bayes calculated the predictive probability for the next sample
himself. Anyway did Price, who posthumously communicated Bayes work, do this. He
found the probability for a binary variable to be:

_n+1
T N+2

P(X(nt11=1)

which is the everyday Bayes formula used to calculate simple probabilities for binary vari-
ables where N is the total number of samples and n is e.g. the number of ones obtained
from a Bernoulli trial. The ratio 1/2 here indicates that we started with a uniform density.

In Supplement I we show rather detailed how this calculation is being done and we also
describe how we use the same technique to calculate the variance of the posterior distribution
for each new sample as well, which works exactly for single and joint probabilities. We also
tell somewhat about how the formula generalizes to multiple valued variables and how to
guess an a priori distribution in some specific case.

These probabilities and their variances can be calculated analytically exact but for the
more complicated expressions as the weights in the Bayesian neural network, which we also
refer to as the information component (IC) and the predicted posterior probabilities we have,
so far, used the Gaussian approximation formula for the variance of a function. During the
progress of this work we did, however found that for the (IC), which is logarithmic, this
expression can be done exactly as well [Koski and Orre, 1998].

In the first presented paper on data mining Supplement I we start by giving a brief
description of the Bayesian neural network and then we focus on the principles for estimation
of the different probability measures needed, as well as the variances of their distributions.

We do, however, also deal with other data mining issues in Supplement I like finding
the most dependent combinations of variables in a huge data set. Generally this is an NP-
complete problem (can not be solved within polynomial time due to the huge amount of
combinations to be searched through. Despite the size we may still look for combinations
of variables up to a certain complexity level. To search for all possible combinations up
to a certain order, would of course easily turn into an undo-able task due to combinatoric
explosion. However, when the cases to be investigated show a sparse occurrence of variable
values, which is the case with the data base of adverse drug reactions we are working with in
Supplement I and Supplement IT , then this can be done efficiently up to a rather high order
of combinations as the combinatoric complexity of the problem is kept down to a reasonable
level. We use a sparse matrix technique here, that only creates those input/output units
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that actually occur in data, then creates the connections needed when combining the so
found variables in all possible combinations. The sparse matrix technique for looking for
combinations is also briefly described in Supplement I .

1 The problem addressed

The main problem addressed in Supplement II is fundamentally to search for new unex-
pected dependencies between variables in the data base and produce lists of the most likely
dependency connections found and report these to be treated by human experts. The fun-
damental issue here is to reduce the amount of information to be treated by the experts, to
reduce the number of reports from about 35000 to about 100. The BCPNN software sees
a large matrix of data, where each row in the matrix corresponds to one case report. The
potential size of this matrix is rather large as for instance the number of reported drugs so
far is over 12000 and the number of reported adverse drug reactions is almost 2000.

The BCPNN software we are developing is being used in a data mining project in
cooperation with Uppsala Monitoring Centre for Adverse drug reactions, the WHO Col-
laborative Centre for International Drug Monitoring. This is an international centre which
maintains a huge data base INTDIS over adverse drug reactions from all over the world.
INTDIS contains anonymous case reports of suspected adverse drug reactions. For each
report there may be up to around 70 different variables telling about the patient age, coun-
try, sex, drugs taken, drug amounts, adverse drug reactions, suspected drugs, etc. There
is also information about drug substance contents. It is the largest database of this sort
in the world, at the time of writing it contains about two million reports, and about 35
000 new reports are added quarterly. There are 47 national centers which collect reports
in their own country and send them to Uppsala Monitoring Centre. The task of trying to
find new drug-ADR signals has been carried out by an expert panel, but with such a large
volume of material the task is daunting. We have instead developed a flexible, automated
BCPNN-based procedure to find new signals with known probability difference from the
background data.

2 Implementation Issues

The INTDIS database of adverse drug reactions is a relational data base organized as
a set of SQL tables, now containing 73 variables. A data base of this size put certain
requirements on the software accessing it. During the design of the system we divided the
solution into different modules each concerned with different parts of the problem. The main
modules were the data base accessor, data preprocessor, layer module, ANS scan module, a
calculation and analysis module and a module for interactive visualization of query results.
Our original idea was to use a standard data base tool for the data base accesses and use
a preprocessor to transform the output from this data base accessor into a form suitable
for our neural network software. We contacted a manufacturer of a well known data base
software and were allowed to try this program package to use as a data generator to the
neural network software. Unfortunately, after a great effort had been put in getting the
data base accessor to produce data in the way we wanted, it showed that this could not be
done. This way of doing data generation was too slow in a round-about way. Both the data
generation and the preprocessing of the data required too much computer resources to be
useful. The main problem was that for an efficient training of the neural networks we had
to access the data as objects, and not in the relational data base way. Therefore we made
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our own accessor that could be optimized for its task, to scan the data base efficiently and
transform the data into a suitable form to be presented for the BCPNN networks. The data
preprocessor was no longer needed and the accessor could now directly transfer data from
SQL tables to the ANN layers. We did no longer need a huge intermediate storage of data
either. We gained several hundred times in speed up and the training times now become
reasonable on a unix (Sun Sparc) work station.

The training time, when we also collect statistics about the variables as matrixes of
dependencies vary a lot depending on how many variables are used and to what extent
variables are combined into complex units. A simple query takes a couple of hours and a
complicated one may take 7-8 hours. For a while we tried to run the software on a super-
computer to decrease the training times. This was a parallel executable MIMD machine
with a lot of CPUs and a lot of memory in each CPU. We did, however, find that the waiting
queues to this machine was to long to make this efficient so we continued working on the
work station solution. At the moment we are running most of the searches and analysis on
a dual CPU 300 MHz Pentium II machine equipped with 512 Mb of memory ! , which runs
the GNU/Linux operative SMP (synchronous multi processing) system. Scheme [WC91] is
used as high level scripting language, in this case a development version of Guile. All low
level speedy processing is done in ANSI-C/C++.

3 Process Modelling

Imagine that you are freezing and you want to know what temperature it is around you to
find out whether you are getting sick or it is just cold in the room. You happen to find
a thermometer but accidentaly the one you found just gives you degrees Fahrenheit and
as you are from Sweden you have no idea what these values mean. Then you remember
that the references for Celsius temperature is melting ice and boiling water. With some
experiments with ice from the fridge and some boiling tea water you have soon solved
the problem and now have a mapping from Celsius to Fahrenheit. You may satisfy with
just two measurements but you may also be an ambitious person that don’t trust a single
measurement and get enthusiastic when you found your pocket calculator. Now you can
do some repetitive experiments and some linear regression. You will soon find out that the
functional mapping between the two scales is C' = 0.55 « F' — 18. When you later find a
book in your bookshelf telling you that the conversion rate is C = (F' — 32) - 5/9 you will
be proud of your self.

Now imagine that you have an industrial process, like a pulp to paper manufacturing
process. In the same way as with the thermometer above, which you didn’t know the
meaning of, you get a lot of measurement values telling you different values. What you really
want to know is the paper quality outcome measured in some easy to understand values
as tear, tensile etc. With the same technique as above using some multi-variate regression
technique you may find some nice polynomial expressions telling you the functional relations
between measured value and outcome values.

After a while you realize that it would be nice to know some more. You have found
that the so predicted outcome is not always correct. You suspect that the reason may be
that there are some unknown wvariables that you may not know. It may also be that in
some regions of the space the functional relation is much more complicated than you could

Lfor computer geeks I can tell that it is built into an attache case which also has place for a lap as X-term
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foresee when you created your multi variate polynomial expression, maybe the polynomial
order was not high enough? On the other hand you believe that you could not do better
with a more complicated polynomial because you didn’t have that much data to use for the
regression because those samples were expensive to make. If you make the expression more
complicated you may risque to get over-fitting of the polynomial. Instead it would be nice
to get some idea about when you can expect a high accuracy and when you can expect a
low accuracy.

Now you get the brilliant idea that instead of mapping the values you map the uncer-
tainties of the values instead. You remember some more from your course in statistics and
imagines that each measured value comes from a certain probability density function, as
does the whole data set. You realize that the whole density for the data set is rather com-
plicated but you think that it would be possible to see the whole distribution as composed
of a large set of small Gaussian density functions. You take a set of these Gaussians and
let them fit to a training data set as good as possible. Then what is as good as possible in
this case? Well, you have heard about something called the maximum likelihood, i.e. just
place these Gaussians, in a way that maximizes the probability that your data has come
from those Gaussian probability density functions (or processes).

Now when you get a new measured value you can calculate the probabilities that the
sample is coming from any of these Gaussian. You then do a linear associative mapping to
get the probabilities for the Gaussian in output space to be active. Now you want an actual
value as output, not a probability density function, but for that purpose you calculate the
joint expectation value for those output Gaussian you have activated, which is very easy
in this case, it is the same as their center of mass. And, finally, now you can integrate
over these output density functions and calculate a confidence interval for your predicted
outcome.

A very general problem considers the issue of functions, values in one space, mapping
to values in another space. This may be as easy as a linear conversion of temperature
C = (F'-32)-5/9 or classifying a Bach fugue being as written by Bach as well as recognizing
grandmothers face in a crowd of people. Any mapping from one space to another which
gives the same result each time and does not contain a memory or some internal states, can
be considered a function.

In most regression models used for function approximation like the multilayer BP net-
work, the output is a real value. In the mixture density model presented in Supplement ITT
here the output is instead an approximation of the density function for a response variable
conditioned by a certain explanatory variable value. This density function gives information
about the a posteriori density which, in addition to the predicted value, can also give e.g.
a confidence interval (assuming uni-modality). Observe that this works for multi-modal
outcomes too, but then you may be interested in several smaller confidence intervals, not
one huge. Both the input and output variables density functions are modelled my mixing
Gaussian density functions. The Gaussian used are called RBF (radial basis functions). It
is, however, some regression going on here, the adaptation of the component density func-
tions used is similar to kernel regression, even though the criterion is somewhat different
from the on used in multivariate regression techniques.

Advantages of doing function approximation with the mixture density model, compared
with a regression technique as BP are:

1. The RBF representations of variable spaces are built unsupervised, which means that
cheap unlabeled examples can be used.
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2. The generalization, can be dynamically improved due to the regularization capabilities
of the RBF:s which decrease the requirement of cross validation.

3. Design of the network is almost parameter free as the relation between number of
training examples and preferred maximum number of RBF:s is simple.

4. The supervised training part is quick and gives good results using a one shot learning
process.

5. The predicted mixture density for response variables gives, besides the ability to
estimate a confidence interval, also the ability to detect ambiguous output values, i.e.
a multi modal density function.

6. A missing value in an input sample vector is still useful as this only leads to a less
specific conditioned a priori density in the missing dimension.

In the presented work we has concentrated on the function approximation problem and
have applied this on process modeling . We have tested methods for filling in of missing
input values and to do both training and prediction with data containing missing values.
The tested method used for handling missing data gave no improvement during training
but we obtained useful function values when data was missing during prediction.

It may be noted that spatio temporal patterns can still be modelled with a functional
mapping network by adding time delays and, if necessary, state memories.

4 Temporal Modelling

When we deal with many real world problems we will find that there are a lot of them
where the care for time is essential. In economics we want to do forecastings of interests
and prices and it is most often so that to be able to forecast the next value in a series of
values we need to know the behavior of the values for some period of time lately. In process
industry the most processes are dynamical in some sense, there may be parts of the process
which involves states, the process may have a kind of memory and will not select the next
state purely on the instantaneous value, instead the next value vill be a function of which
states the process has visited lately and there may be charging/discharging events going
on, which may give a complicated temporal behavior.

The fundamental problem to be dealt with is learning/recognition of simple sequences.
Assume that we have some kind of temporal associative memory where we can store se-
quences like:

‘‘One sentence of letters’’

‘“Another sentence of letters’’

‘A third sentence of characters’’
Now we can imagine that we are able to recall these sequences by giving, e.g. the start of
each sentence. It may be clear that given e.g. the following starting “tags”:

S 1+ ??

we will have no problem of recalling up to:
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Now, the continuation of these sequences will depend on the properties of the network. If
the network was able to remember rather long sequences then it may manage to come up
with the correct continuations here, but otherwise it may instead choose the most probable
one ‘‘letters’’. This kind of problems is dealt with in Supplement IV .

Now, let us imagine that you are going to build a system for automatic speech recog-
nition, but you don’t want to tell the system in detail about all the words and delimiters
yourself. As you are certainly aware of there is no delimiters in natural speech, you have to
find these yourself. So, instead of telling the system what to learn and what to look for we
just present large chunks of data for it and let the system decide on its own how to best find
where a phoneme or word starts. Yes, both phonemes and words share the same problem.
As all classification tasks it is an hierarchical issue. At one low level we have phonemes, at
another higher level we have words. The issue of finding these parts of the patterns is the
segmentation problem. The segmentation problem is fundamental in pattern recognition.
We wanted to find a simple method that could perform automatic segmentation on any
temporal sequence, as the one referred above contains at least two classification levels we
tried this method on a toy problem instead. In this case we used words from a computer
dictionary that were put together in random sequences of words.

The goal with the work which is presented in Supplement IV thus was to detect higher
level items in an unlabeled sequence of data. Given data with a sequential/temporal be-
havior this shows up as the temporal chunking problem which may be illustrated by the
example:

thisisacontinuousstreamofdatawhichispossibletoreadwithoutseparators

Here, we want unfamiliar lists of familiar items (characters) presented sequentially to be
recognized as new items (words). In the first place just the characters are familiar. When
we have seen different lists several times we will also recognize the words as familiar items.
The method presented here detects segmentation points between words. Conceptually this
means that we have grouped a sequence of elementary items into a new, composite item.
The proposed method uses a Bayesian learning scheme in the form of a temporal asso-
ciative memory earlier investigated where the relaxation scheme is modified with a few
extra parameters, a pairwise correlation threshold and a pairwise conditional probability
threshold.

The method we investigated was able to find start and end positions of words in an
unlabeled continuous stream of characters. The robustness against noise during both learn-
ing and recall was studied. We got clear indications that the level of the threshold for
the correlation? (information component) was the most useful way to automatically detect
segments with this method.

5 On Regression Modelling

An important issue in process industry is the prediction of certain response variables from
a process given a proper subset of available explanatory variables for that process. This

2later on we used the name information component (IC) for this measure to avoid ambiguity problems
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prediction may be desired for several reasons. An actual response variable from a process
may be hard or time consuming to measure. It is also desired to check the result of a change
in some of the explanatory variables for a process before actually doing it.

One part of this project was done as a cooperative work between SANS and the paper
industry (STORA Teknik AB). It was studied how a set of laboratory data, the result
of time consuming laboratory experiments, could be predicted from a set of explanatory
variables for a process. A method was developed which searched for the minimal architecture
that was able to predict a certain laboratory value. The reason for trying to find a small
architecture was that the data set available for training may be too small to allow for
networks with a high dimensionality. The method also arranges the inputs according to the
impact they have on prediction performance. This makes it possible to further reduce the
network dimensionality and increase prediction quality by removing irrelevant parameters.
The model will continually adapt to changes in the process behavior.

We found that in such a case like this, where the amount of data was rather limited,
it was preferable to make one optimized network (i.e. non linear regression model) for
each variable to model. As another result of this work we got valuable experience dealing
with real data where we also developed a lot of methods for analysis, cross validation in
BP-networks and automatic presentation of results graphically and in table form.
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6

Conclusions

The most important results and findings of this thesis can be summarized in the following
points:

We show how a Bayesian Neural Network can be extended to model the uncertainties
in collected statistics to produce outcomes as distributions from two different aspects:
uncertainties induced by sampling, which is useful for data mining; uncertainties due
to input data distributions, which is useful for process modelling.

We show how complex dependencies can be found within large data sets but still
avoiding combinatoric explosion.

We show how these techniques have been turned into a useful tool for real world
applications within the drug safety area in particular.

We compare some results of the BCPNN technique with the well established non linear
regression technique, BP (back prop networks), for processing modelling, showing
that the BCPNN performs at least equally well, but provides extra information about
uncertainties of produced outcomes.

We present a simple but working method for doing automatic temporal segmentation
of data sequences.

We indicate some aspects of temporal tasks for which a a predictive Bayesian neural
network may be useful. Showing how the connection matrix of the network can be
reduced due to regularities in the data.

The work presented in this thesis has given us several useful methods and experiences. We
now have a working method in development which is adapted towards real world application
usage of these Bayesian ANN methods. This research has, in particular, given us a method
for data mining, classification and prediction where huge amounts of data is involved. The
application we address with this method will be a help in drug safety to perform quick
and efficient analysis of adverse drug reaction reports. Although, the method is inherently
general and can, as have been shown here, be applied to many different application areas
and problem types.
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SUMMARY

An international database of case reports, each one describing a possible case of adverse
drug reactions, is maintained by the UMC. There is a large set of reports, arriving in
quarterly year batches. Each report is here seen as a row in a data matrix, and it con-
sists of a number of variables, like drugs used, adverse reactions, and other patient data.
The problem is to extract significant apparent dependencies to report back to medical
research and practice. This is done by comparing estimated frequencies of combina-
tions of variables with the frequencies that would be predicted assuming there were no
dependencies. The estimates of significance are obtained with a Bayesian approach via
the variance of posterior probability distributions. The posterior is obtained by fusing
a prior distribution with a batch of data, and it is also the prior used when the next
batch arrives. As an example, when estimating a probability of a binomial distribution
with frequency counts, it is convenient to use a Beta distribution as prior. So, using
Beta(ag, a1) as prior, obtaining a new batch with counts ¢g and c;, the posterior will
be a new Beta distribution with easily computed parameters: Beta(ag + co,a1 + c1).
For the non-informative choice of a uniform prior Beta(1,1), this gives us the famous
Laplace rule of succesion. When considering dependencies between n variables, it is
natural to use Dirichlet distributions of dimension 2"~! as priors and (since they are
conjugate to the multinomial distributions) posteriors. When deciding whether the
joint probabilities of events is different from what would follow from the independence
assumption, the ‘information component” log(P;; /(P;P;)) plays a crucial role, and one
main technical contribution reported here is an efficient method to estimate this mea-
sure, as well as the variance of its posterior distribution, for large data matrices. We
also present an efficient way of searching for higher order combinations in this type of
data avoiding the effects of combinatoric explosion. Following established practice in
the area of Bayesian neural networks, we use E(P(A|D)), V(P(A|D)), etc to denote
the mean and variance of the posterior distributions of P(A|D).
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1 INTRODUCTION

The Bayesian neural network we use here is a feed forward network ! where the learning
and inference rules are based upon Bayes rule [Bay63] ,[Lap14] for conditional probabilities,
together with an assumption of independence between inputs gives, for an outcome A
conditioned by D, being composed of n independent subevents d;

P(D]A) P(di]4) P(di|4)  P(dal4)
P(D) P(d) P(d) = P(dn)

P(A|D) = P(4) x P(4) (1)
The outcome A may in general be a continuous distribution, but here we deal with discrete
outcomes. In the following A means the set of mutually exclusive outcomes ay,a;, - .., 0m.
We use the symbol “A” as this often represents adverse drug reactions or a combinations
thereof in our application. The input data d; most often represents drugs or combinations
of drugs.

Such a network is fundamentally a naive Bayesian classifier [Goo50] but it has earlier
been extended with higher order units that deals with classification and diagnosis also for
tasks involving dependent inputs [LH96], where it was denoted BCPNN (Bayesian Con-
fidence Propagation Neural Network). Here we extend the latter by calculating also the
variance

¥ (Tay) @

which is a particularly useful measure, for instance, when we do data mining on small data
sets, where the uncertainty may be large, and V(P(A|D)) as well, which gives us a confi-
dence measure of a prediction or classification. The Bayesian feed forward neural networks
remind somewhat about Bayesian Belief Networks [Pea88] and they can theoretically be
transformed into each other [HL95]. The main difference is that in the latter only the de-
pendent variables are dealt with in each node, whereas in the neural network model both
dependent and independent variables are treated in parallel and the result is propagated
through a few layers only.

1 Bayesian Inference in BCPNN

Let event D in (1) consist of n independent sub-events dy,ds . . . d,, and replace P(d;|A) with

% (definition): which gives the posterior probability P(A|dy,d; . ..dy):

P(AID) = P(Aldy,d; ... dn) o P(A)P(dl)P(A) P(d;)P(A) "~ P(d,)P(A)

3)

The “x” in (3) is there because the output has to be normalized, to make mutually
exclusive probabilities sum to one 2. The next step is to partition the input space into
independent subspaces, which will be used as “hidden” units. In the most extreme case
we could have a unique coding for every possible combination of input variable values, but
this would be very wasteful on the network size and cause extremely poor generalization.
One thing which has showed to be generally useful ([LH96],[HL95]) is to code all types of

lis has also been used as a recurrent Hopfield-like network useful for pattern completion
[LE85],[LE89],[Kon89]
2For the recurrent model thresholding instead of scaling has also been used [LE89]
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variables; binary, discrete and real valued; into “hypercolumns”, i.e. separate input layers
for each variable coding mutually exclusive events. A binary variable is thus represented
by one “on-unit” and one “off-unit”. Therefore, let us now represent each event by d; and
its complementary event d;, where my; is the (mg; > 0, 74, + mg = 1) belief on event d;:

P(duA) P(JMA) )

Py = PO IT ( pamcn™ * paypoy™

More generally we would code each subspace representing the event d; into K; mutually
exclusive ( zi{( d¥ = 1) sub-events:

P(d}, A) P(dt, A) P(d;*, 4)
P(AD) oc P(4) H <P(d})P(A) " P@n P T PR Py ) ©

A feed forward neural network-like expression for (5) thus becomes:

P(A|D) « P(A HZ wd? (6)

P(df, A)
S T (7)
2 PP
where (7) may often be preferable of practical reasons and due to better noise residuals.
For discrete belief values (7rdgc € {0,1}) we may use this simplified form:

log P(A) + Z Zlog [ (d, 121)] Wd?] (8)

In the last expression (8) we would recognize “exp” as the transfer function and “log P(A)”
as a bias term from many artificial neural network architectures. The corresponding weight

kA . . A . )
P (8) or just straight piss (6,7). Which equation to

prefer depends on the application. For precise mixture modelling [OL96] should preferably
(6) or (7) be used, due to the better accuracy. The last one (8) has been used a lot
in e.g. recurrent networks [LE89] and also in classification [HL95]. In the data mining
application described here and in [BLE1T98] we use the logarithmic form, mainly because

this has a nice connection with information theory, especially mutual information [Pea88].
P(d},A)
P(d})P(A)
measure of the information that migrates from one state of a variable to one state of another
variable. Mutual information in its discrete form can then be regarded as a weighted sum

of information components:

ZZP z,y) log PI(D:S%

In the rest of this paper we use the following definitions of the weights and information
component (observe that we most often skip index & in the text below):
P(d¥, a;)
W., = — 279/ 10
Y P(d¥)P(ay) (10)
IC,'J' = IOg Wz'j (11)

4)

or

P(A|D) x exp

log P(A) + Z log

P(A|D)= x exp

value is then either log

Of that reason we refer to the term log as information component as it is a

Z{) )

P(y)
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2 METHOD TO ESTIMATE PROBABILITIES AND
UNCERTAINTIES

The estimation of probabilities and their distributions is fundamental in our work. Therefore
we start by estimating the probability for a single event. For simplicity we assume the
variables we use to be binary, with outcomes 0 and 1. Now let us estimate p;, the probability
of the outcome 1, from ¢; which is the counter for the number of ones out of C = ¢y + ¢
trials. For a binomial distribution the probability to get c¢; ones is:

Plerlpr, ©) = (§) 5 (1= po)* (12)

In the classical perspective we would get the Maximum Likelihood estimate of p; by differ-
entiating this distribution vs p; and find the maximum for ;Z-P(ci|p1) = 0 as:

c1(1=p1) = copr
. __a _a
pl_C()-l-Cl _C

(13)

This classical estimate does, however, not give well behaving estimates of p; for small
counter values and does not tell us anything about the significance of an estimated prob-
ability. To overcome this we use the Bayesian method to assert an a priori probability
distribution for the variable, which is refined when more information i.e. samples, become
available. We consider p; to be drawn from a conjugate family of distributions, which we
assert as the prior distribution. A convenient prior which is much used if we do not ex-
pect the input to be a multi modal mixture [BS94],[Hec97] is the Beta distribution, here
described by the hyperparameters a; and ag

F(Oél + OL()) a1 —1
T(a)T(ap) !

which gives a posterior for py, given the counters ¢; and ¢, which is also a Beta [BS94]:

P(p1) = (1=pp)*! (14)

F(C+a1 +a0) 01+Ot1—1
F(Cl + al)l"(co + Oéo) !

P(pilci,co) = (1 —py)coteet (15)

The expectancy value p1 = E(p1) we get by integration and normalization, where the
reduction makes the I's disappear:

1 _ _
_ Jopr-p (1 — py)coteo—lgp

E = 16
) = e iap (16)
The solution to this [where 8(z,y) = I'(z)T'(y) /T (z + y)] is:
ﬂ(cl +1 —|—(11,C—Cl +a0)
E = 17
(#) Bler +a1,C — e + o) (1)
which simplified gives the following (o = a; + ap) for py:
. ct+a
B = E(p) = — - (18)

C+a
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In the same way we find the variance estimation (02 = V (p) = E(p*) — E(p)?) as:

2
f()1p12 _p1c1+a171(1 _pl)co+a071dp (f()lpl ,p101+a1—1(1 —p1)c°+a0_1dp)

V(p1) T 5—(19)
Jopreres AU —peoreotidp ([l et (1 - py)rten gp)
The estimate of V (p1) thus becomes
Vi) = (a1 +a1))(C—c+a—o) (20)

(C+a)’(1+C+a)

1 Joint Probabilities

For the joint probability p;;, which has four different outcomes, we assert a 3-dimensional
Dirichlet-distribution of p11, p1o and pe1 (Poo = 1 — p11 — P10 — Po1) as prior in the hyper-
parameters 711,710, Yo1,Yoo- Consider e.g. P(p11):

P(pu1) = Di(pi1ly1,710,%01,%00) (21)

T'(v11 + 710 + Y01 + Y00) 1 1 1 1
— P Y11 p Y10 P o1 1 -p -p - D oo
T(711)C(710)C(701)T(700) " 10 o ( 1L~ P10 = Por)

The marginal distributions to Dirichlet are also Dirichlet but in this case they reduce to
a one dimensional Dirichlet which is a Beta (14). The posterior distribution given the
counters ¢i1, €19, €o1, Coo is also a Dirichlet distribution [BS94]:

P(pi1]c1, 10, 01,¢00) = Di(pii|eir + 71,10 + Y10, o1 + Yo1, oo + Yoo)

The expectation value E(p11) thus becomes:

1 p1 p1 .
E(p11) = fo lfo lfo 11)11Dz(p11|011 + Y11, €10 + Y10, Co1 + Vo1 Coo + Yoo )dPo1dP10dp11 (22)
Jo Jo Jo Di(piilerr + 1, ei0 + Y10, cor + o1, €00 + Y00)dPor1dpiodpin

The evaluation of this integral involves some hypergeometric functions and is a bit cum-
bersome and we skip the details here. These expectation values can also be looked up in a
statistical textbook like [BS94]. Whatever we do we end up with the following:

¢+ _Ci1t+7

FE = =
(P11) c11 + Y11 + €10 + Y10 + Co1 + Yo1 + Coo + Yoo C+y

and for the variance (observe similarity with (18,20)):

Vipu) = E@)( = B@pr)) (24)
1+ c11 + 71 + €10 + Y10 + Co1 + Yo1 + Coo + Yoo
(11 + 111)(C + v —c11 — 1)

(C+79)2(1+C+7)




2. METHOD TO ESTIMATE PROBABILITIES AND UNCERTAINTIES 25

2 Weights and Information Components

In our first attempt to find the expectation values for the weights [E(W;;) = E(;’—p’J)] and

their variances we tried the same approach as above by using the integral:

P PNt 1 o110~ 1p01’Yo1 1(1 — P11 — P1o _pOI)’Yoo 1
/ / / (P11 +p10)’711+‘710 2(p11 + po1) Y1 tro1—2 dp11dp1odpor (25)

We could, however, not find any closed form solution to this, which would still not have
taken into account any cross dependencies. Instead we have used the following simpliefied
expression, utilizing (18),(23) above, a and S are number of mutually exclusive events in
each class for variables ¢ and j respectively:

E®ij)  _ (e +7i)(C +a)(C + )

E(W:)) =~ — — = 26
W) > BB ~ (©+ 1)+ ale; +3,) (26)
For the specific case of the IC;; this can, however be calculated exactly, due to:
B(ICyj) = B(log ") = E(log ;) ~ Ellogpi) ~ E(logp) (27)
iDj
and it can be shown [KO98] that when p is Beta(a, b) distributed, then
b > 1
FEl =———b- 28
o8P a(a + b) ngl(a+n)-(a+b+n) (28)

In the application work we present here we have, however, used the following simplified
form for the expectation value E(ICj;)

(pU)
E(IC;;) = logE(W;;) =lo 29
( Z]) g ( (%) ) gE@,)E@]) ( )
The variance for the weight [V (W;;) = E(W};) — E(W;;)?] is harder to estimate. So far we
have used the Gauss’ approximation for the variance of a function i.e. V[g(Xy,...,X§)] =

Zf:k V(XZ-)(a—Bugl—,)27 where we have skipped the covariant terms. We assume symmetrical
distributions, therefore we set yu; = E(X;). The variance for the weight V(W;;) then is:

V(pii i'QV i i'2V )
(UL pl(fl)iyjz) + p;i4p§'€) p;ﬂp?:]) (30)
(C+a)*(C + B)*(cij + i)
(C+7v)%(cs + ai)?(c; + B5)?
(C—cij+v =) , (cij +7)(C—cita—ai)  (cj +7i4)(C —cj+B—5;)
1+C+7) (ci +a)(C+a+1) (cj +B)(C+p+1)

(31)

For the information component IC;; we can, due to the properties of the log-function as
in (27) and in [KO98] write the variance V(IC;;) as an exact expression (here including
covariant terms):

V(ICy) = V(ogpi;) + V(logpi;) + V(logpij) (32)
—2cov(log pij,1og p;) — 2cov(log pij,log p;) + 2cov(log p;, log p;)
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and it was proved [KO98] that for p being Beta(a,b) distributed, then:

> b2 + 2ab + 2bn

V(logp) = ;) @in) (atbin)? (33)

For the V(IC;;) we are still using the simplier approach with Gauss’ approximation also
here until our software can collect the covariant terms, i.e. :

1\’ -1\’ -1\
V({ICi;) ~ V(py) <—> + V(i) (—) +V(®;) (—) (34)
bij pi pj
Here we measure the IC;; in bits (i.e. use log,), which gives the following explicit expression:
C—cij+7— C-cita—q C—c¢+B—-Bi
(ij+75)A+C+7) (ci+e)A+C+a) (¢ +8)1+C+P)
(log 2)*

3 Variance of Conditioned Posterior Distribution

Now we end up by calculating the variance also for V(P(A|D)), which is a product of
sums according to (6) but to make the approximation of this easier to calculate we use the
logarithmic version (7) here too. To calculate an approximate variance for this expression
is straight forward by using the Gaussian approximation for a sum of independent variables,
ie. V(Y ci-Xi) = Y, c2-V(X;). We do, however, have to care for the proportionality due
to the normalization. Let the class A consist of m mutually exclusive subclasses ai,a; . .. am
and let k be the scaling factor for each subclass, from (6) we let

(a;j|D) = P(a; HZ L) Play) ™ (36)
1
S STy )} (87)
P(a;ID) = rb(a;|D) (38)
then
V(O(@ID) = Vlexpllog(®(a;D))) (39)
~  exp (E(log(8(a;]D))))? - V(log(8(a;]D))) (40)
= E(8(aj|D))? - V (log(6(a;|D))) (41)
and
V(log0(a;|D)) ~ V<1ogP<aj))+V<Zlo Z% dk> (42)

Q

;/( 7 + Z v (log Z dk) (43)
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now set [Wz’; = %] and assume the terms in the sum (43) are independent:
V(P(a;))
1 D) ~ i 1 kg 44
V( Oge(a]| )) E(P(CLJ))Q +;V Og;Wz]ﬂ—di ( )
V(Pay) | - V(S W)
E(P(a;))? + 2 (45)
! i B (Ek Wil;ﬂ-d’.“)
V(P(a;)) S V(W)
~ — + Z . 2 (46)
BPw) " & (2w
¢ 2k Wij”df)
Then we end up with the following approximation for V(P(a;|D) from (41,43,46)
2 k
V(P(a;)) DV (Wz])
V(P(a;|D) = £*E(0(a;|D))* | =755 + : 47

i B (ZJ W;;’Trd;e)z

For practical reasons we may still want to use logarithmic probabilities log(P(a;|D) in the
output. Then, according to (7,36,37)

log P(a;[D) = 10g8(a;|D) ~log'y" 8(ay|D) (49
= logP(a;) + ZlogZWi’;ﬂd? +logk (49)
i k
From (37, 46)

V(log P(a;|D)) =~ V(logf(a;|D) —logk) (50)

_ V(Pe) | 2k V(W)
~ BiPa))? . E( - 5 + V(logk) (51)

¢ ZkWiﬂdf)

1
YR o) 52
R ) %3)
V(P Y V(W) 1

Vg PeID) ~  pig et > Sy Y

i E (Ek Wilz'ﬂdi?)

4 Selecting Proper Priors

The priors for p; and p; are not critical as the convergence to the “real probability” is rather
quick [BS94]. The most simple prior for a binary variable to use hereisay =ag =1, i.e. a
non-informative (sometimes called ignorant prior) [BS94], which corresponds to an a priori
assumption about equal probability distribution. We should, however, be aware that for a
k-nary variable (as in 5), we need another prior. We could then assert a; = 1,a = k * ;.
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The prior for p;; is more critical because we want the weight values to behave well for
small counter values. Here with well we mean that no data samples are equal to indepen-
dence, i.e.

lim IC;; =log 2% ~0 (55)

ci,Cj,Ci;—0 DiDj

we choose the prior for p;; so that:

A cijt7i;
: Pij C+y
lim IC;; =log—— =log——"—— ~0 56
cnc0 T 8 pipr =% Thupy (%)
Then we can initialize ;; to some small number (e.g. 1) , as
Yij = 1 (57)
Vij
7= 22 (58)
bipj

In figure 1 we see an example of how this looks when starting with the ignorant prior
without any samples and then how the posterior distribution get more and more narrow
when we add a few samples. In the figure it is also shown how the estimated prior for the
joint distribution P;; look like for some of the first samples.

Pi=Befa(L,1),E(F)=0.5,V (M))=0.0833 P=Beta(2,3),E(F))=0.4,V (F|)=0.04 Pj=Beta(2,15),E(F))=0.12,V (F})=0.006
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Figure 1: Some examples of priors for P; and P;;. The upper diagrams show priors for P;
when ap = a1 = 1; (co = 1,¢1 = 0); (co = 2,¢1 = 1) and (co = 14,c1 = 1) respectively.
The lower diagrams show the corresponding estimated priors for P11 when i1 = 15 ¢11 =
0,c11 = 1,¢11 =1 and ¢p, ¢1 when both 4, j are as in the diagrams above.
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3 OTHER METHOD RELATED ISSUES
1 Variable Value Coding

The coding of binary and discrete variables into a neural layer representation is rather
straight forward. For a binary variable, £ we input the values [z, Z], which is also the
simplest example of a hypercolumn, i.e. a neural layer with mutually exclusive input units.
When the variable value is missing we input the a priori probabilities instead: [p,ps]-
Any discrete variable, whose values are mutually exclusive is coded in this way. In general
we may input a normalized mixture of belief values instead of the a priori probabilities
for missing values. Real valued variables are coded using such a mixture of belief values,
which here represents the degree of membership to a set of Radial Basis Functions (RBFs)
[Ben94]. The placement of these RBF's is usually done using the EM algorithm [Tra93].

2 Dependent Variables

Variables which we find to be very dependent on each other we handle by coding the
combination of these variables into a separate subspace, a hypercolumn, i.e. a neural layer
with mutually exclusive combinations. As an example, assume that we find that the binary
variables X and Y are dependent of each other, then we make a hypercolumn with 4
units representing {Zg, Ty, g, zy}. When the number of combinations get large this coding
is inconvenient, then a reduced coding is used, where only the combinations or features
that actually occur in training data will be coded. Considering real valued variables there
is not much difference. The RBF units themselves may combine an arbitrary number of
dimensions into, what is basically, a normalized mixture of belief values as one hypercolumn.
The RBF coding is done “before” the treatment of discrete variables, which is necessary
to be able to combine real valued variables with discrete variables. To find dependencies
between variables we use the following methods (¢ is a threshold):

e check for strong pairwise mutual information between all pairs of subspaces. The
procedure is repeated to find higher order combinations as long as:

$m1 <Y paylog

Ty

Pzy (59)

DDy
e check all variable combinations up to a certain complexity level in one shot. To

decide what combinations to save we use the Kullback-Leibler distance between the
joint distribution and the marginal distributions. We save those subspaces where:

DPayz...
L < E . Jog ———— 60
OKL3 Pzyz g PaDyPs - - ( )

TYZ...

e 3asin previous item: check all combinations of variables up to a certain complexity level
in one shot. Save those combinations only, in a sparse manner, where the information
component between input and output layer is above a certain threshold 6;¢
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orc < log (61)
A comment on the thresholds ¢ , ¢k and ¢rc above: At the moment these kind of
thresholds are considered to be design parameters in the BCPNN network. We have no
automatic method generating them so far.
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3 Sparse Matrix Technique

When working with this huge WHO data base, INTDIS, of adverse drug reactions we first
used full matrixes. We found this to be inefficient because a typical full connection matrix,
containing 20-50 millions of connection elements did often contain a non zero value in 1-2%
of the positions only. Therefore we started using a sparse matrix technique, which reduced
both the required computer time as well as memory requirements drastically. The technique
is “double sparse” i.e. it allows us to create not only matrix elements dynamically, but also
the “neurons” in the input/output layers dynamically.

Thanks to this sparse technique and the organization of the database in reports, were
only a very small subset of all possible combinations can occur on each, we do not need to
do the search for dependent variables fully incrementally. We can decide beforehand how
high complexity level of combinations we want to investigate.

4 RESULTS AND EXAMPLES

1 Signal Generation

In the data base application we want to generate an early warning signal when a certain
dependency between a drug or a set of drugs vs adverse drug reactions is detected. The
procedure is to look for significant differences in weight values between input and output
variables when the last quarterly batch of reports is added to the data base. To be able
to do this in a feasible way considered computing time and memory utilisation we used a
sparse matrix coding of the connection matrix. The procedure was tested on some well
known signals like the drug Suprofen causing back pain and the drug Azapropazone caus-
ing photosensitivity reaction. Results from these time scans can be seen in figure 2...5
respectively.

The diagram in figure 2 shows how the IC (information component) for Suprofen vs
back pain varies over the years 1983 to 1990. The bars around the IC curve show, for each
quarterly year on the x-axis, a 95 % estimated confidence interval for the IC. The diagram
in figure 3 shows how the cumulative probability function P(IC > 0) develops over time.
An article of the drug Suprofen causing back pain was published in 1985 [0S85]. From the
diagrams in figure 2 and figure 3 we can see indications of an association between the drug
and the adverse reaction with rather high certainty, around 80 % after the first quarter
1984, which rises to around 97% in the middle of 1984,

For the Azapropazone case there was a paper published in 1986 of this drug causing
photosensitivity reaction [HN86]. From the diagram in figure 4 showing IC for Azapropazone
vs photosensitivity reaction we do see, however, a clear indication of this association already
in 1975. In figure 5 we see the prior probabilities for the drug and the adverse reaction.
Observe that the scale for the probabilities in the right diagram is logarithmic. We also
see the posterior probability for the adverse reaction given the drug. As we can see is
P(A|D) >> P(A), which clearly indicates a conditioned dependency between these. All
three probabilities are shown with 95% confidence intervals, but the prior probabilities are
much more narrow than the conditioned posterior probability because there are less samples
in the joint distribution.

Of course it may not be enough to just look upon ICs between individual drugs and indi-
vidual adverse drug reactions. In many cases an adverse drug reaction or a combinations of
several adverse drug reactions i.e. a syndrome may be correlated with certain combinations
of drugs and other variables, like patient’s age, for instance.
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Figure 2: A well known signal: the drug
Suprofen causing back pain. The diagram
shows the IC (information component) for the
drug-ADR association. The error bars show a
95% estimated confidence interval.
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Figure 4: The development from the year
1973 to 1990 of the information component
for the drug Azapropazone vs the photosensi-
tivity reaction with 95% confidence interval.

2 Digoxin versus Age and Rash
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Figure 3: Suprofen back pain: The diagram
shows how the prob. P(IC > 0) develops over
the years, we see that we have a clear indi-
cation of this association with 80% certainty
already after the first quarter 1983.
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Figure 5: Prior prob for Azapropazone

P(i) and for photosensitivity reaction P(j)
as well as the conditioned posterior P(j|i) =
P(photosens|Azapropazone) with 95% conf.
int. Logarithmic scale.

The following experiments aim to demonstrate that IC analysis can be used to study the
relationship between combinations of variables in the database, including, but not being
restricted to, drug adverse reaction association pairs. To establish this, the relationship
between the drug Digoxin and the patient’s age was examined by investigating the IC
between Digoxin and different age intervals for the adverse reaction rash.

The BCPNN network was here set up to generate counters in a slightly different manner

than previously, concerning the C-value in particular.

C would normally be the total

number of reports, but in two of these experiments (in figure 7 and 9) it has been set as
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C'=total number of reports within a specific age group. The age groups are here 10 year
intervals. The ¢; is the counter for the drug or for the drug combined with age. The
occurances of the drug being reported as suspected drug (figure 7) or other drug (figure 9)
are counted separately. c;= the number of reports for the adverse reaction or the adverse
reaction combined with age group, and c¢;;=counts the intersection between ¢; and ¢; in the
normal way.

In figure 6 we see a time scan of the IC for Digoxin versus the adverse reaction Rash
from 1967 to 1997, when the IC has stabilized at a level of —2. The diagram in figure 7
shows the IC for the end of 1997, but here displayed separately for different age groups. In
this diagram (figure 7) we see, for each age interval, that there was a negative IC between
Digoxin and rash. The association was most negative for age range 30 - --40, although in
general there seemed to be a trend towards lower ICs for higher ages, i.e. less probability
for Digoxin to be the suspected drug for causing Rash in elderly patients. However, the
confidence intervals are rather large and the trend is therefore unreliable. We can also see
that the uncertainty in IC is higher for younger patients, which may be explained by the
diagram in figure 8.

In figure 8 we see how the IC for Digoxin vs age varies with the age of the patient.
The diagram of IC vs age in figure 8 shows a clear trend of increasing IC with age. From
a minimum of IC=—4 for 20---30 year olds (¢;; = 34) to a maximum value of IC=3
(cij = 244) for the age group of 90+ year olds. The highest ¢;; value was for 70 - - -80 year
old patients where (c;; = 2228) (IC=1.7). The standard deviations are small for all IC
values due to the large number of reports of Digoxin in the database (7370).

In figure 9 we look upon IC between Digoxin and Rash within different age groups when
Digoxin was not the suspected drug but was reported as other drug. In the same way as
for the results where Digoxin was the suspected drug most Digoxin-rash associations had
negative ICs , however there was a definite trend of increasing positive IC for increasing
age range, such that for age groups 70...80, 80...90 and 90+ there was a definite positive
association between Digoxin when recorded as other and rash.

DIGOXIN - RASH (suspected) DIGOXIN&AGE - RASH&AGE (suspected)
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Figure 6: A time scan of IC for the drug
Digoxin vs the ADR rash from the year
1967 t0 1997. At 1997 the IC has stabilized
around a level of —2.

Figure 7: IC between Digoxin and rash for
the last quarter 1997 displayed separately
for each age group, with ten year intervals.
The age group “all” sums all intervals.
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Figure 8: Here we see how the IC for  Figure 9: The IC between Digoxin and
Digoxin vs age varies with age, indicatinga  rash displayed separately for each age
higher prob. to find elderly patients taking  group. This concerns when Digoxin was re-
the drug Digoxin. ported as “other drug” i.e. not suspected.

2.1 Discussion

The contrast between Digoxin-rash profiles over age for Digoxin=suspected (or interactive)
drug and Digoxin = other drug was striking. This is probably because if elderly patients are
taking Digoxin they are more likely to be taking other drugs concomitantly, than a younger
person taking Digoxin. Therefore the occurrence of rash as an adverse reaction is more likely
to be attributed to another drug, for elderly patients as compared to younger patients. The
aim of these experiments was to examine the potential of the BCPNN methodology for
looking at associations when 3 different variables are considered together. The software
includes methods to search for dependent variable combinations of any order, which is
described below.

5 SEARCH FOR DEPENDENT VARIABLES

1 Goal Description

Here we give an example of using this method to data mine the database to asses the va-
lidity of our complex variable method and to provide and indication of this method being
effective in finding combined variable effects, in this case a syndrome. This also shows that
the method is computationally tractable. We considered a known adverse drug reaction
syndrome complex association: the Neuroleptic Malignant Syndrome which is frequently
reported in the WHO database. The syndrome itself is a combination of several symptoms
which themselves can be reported as individual adverse drug reactions: Creatine Phospho-
kinase Increased, Fever, Death and Hypertonia. Therefore combinations of these adverse
drug reactions will be reported together with this drug relatively frequently. We are inter-
ested therefore in the strength of associations between combinations of the adverse reactions
with Haloperidol, and how these associations compare to the strength of associations be-
tween the combinations of the adverse reactions among themselves. Ultimately whether it
is possible to pick the syndrome out.
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2 Setup of the Experiment

We aimed to investigate all single, pair and triplet combinations of all adverse reactions
in the database and then compare each combination with the drug Haloperidol. For this
purpose we used the sparse matriz (see 3) method which we considered to be the tractable
method in this case. One conventional method to use here would be to first scan the data
base checking all ADRs against all ADRs, then do a selection of what ADRs pairs to be
considered related by some thresholding, then scan the data base again checking these
ADR pairs versus all ADRs again. Do a new selection by thresholding and then check these
triplets versus the Drug. This kind of approach certainly works in finding general feature
detectors as it would, in most cases, find combinations where the Kullback-Leibler distance
between the adverse reactions

p(ADR123)
ADR;53)lo 62
;p (D) log e Y p(AD o) p(AD ) ©2)
would be quite large, but not necessarily find those where
P(ADRyy3|drug) >> p(ADR;53) (63)

which are the reactions we really want to find. The specification given the sparse BCPNN
was to partition the drugs into the classes “Haloperidol”, “other drug” as input layer and
make all possible combinations of adverse reactions in the output layer, i.e. the output layer
will represent a subset of the powerset of all ADRs on each report. The subset we used
here included combinations up to three ADRs As a side effect this gives us the possibility
to check e.g. the KL-distance (62) for all ADRs found in the data base at once, which gave
us a tremendous speedup compared with the original matrix approach, which took several
days on a Sun UltraSparc. The actual search needed only about 7 hour of computing time
on the same UltraSparc. At the same time we are guaranteed to not miss any combination
in the investigation of p(ADR;23|drug) >> p(ADR;33).

3 Results

We generated lists of the associations according the following table:

drug ADR-comb  # ADR comb # IC >0
Haloperidol single-ADR 1700 281
Haloperidol double-ADR 35000 4019
Haloperidol triple-ADR 550000 5388

where the column “# ADR comb” tells us how many combinations that were found in total.
The column “# IC > 0” tells us how many of these had a positive IC. These one with
a positive IC were then sorted on the level of the IC, i.e. the strength of the association
between the drug and the ADR-combination.

As could be expected the Neuroleptic Malignant Syndrome (NMS) were on the top of
all these lists. In the pairs and triplets list this syndrome were also found to be strongly
associated with some of the other symptoms which are included in the symptom picture of
the NMS: Creatine Phosphokinase Increased, Fever, Death and Hypertonia. The reason for
this is that the syndrome is not so strictly defined as being composed of these symptoms
only, it is enough that the patient has a couple of these symptoms to be diagnosed as NMS.
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We also found that all of the included symptoms were high on all the three lists. For the
single ADR list all the four symptomatic ADRs were among the highest 200 IC values. For
the list with ADR pairs these four ADRs were also included among highest 200 IC values
and three of these combinations were in the top ten. For the list with triple ADRs all
combinations with these foure ADRs were among the highest 400 and three combinations
were in the top ten.

6 DISCUSSION

We have made extensive use of the Gaussian approximation formula for variances of func-
tions here. Further on, we have assumed independence between the variables and thus also
skipped the covariance terms just to make it as simple as possible to start with. These
approximation formulas also work best for Gaussian distributions, but here we have used
Beta and Dirichlet distributions as our actual model distributions. We have to be aware
that this may be a coarse approximation in many cases, especially when the conditional
independence between variables is not fulfilled. As long as we care for these things and
make sure that dependent variables are coded in what we call “hypercolumns”, i.e. , by
partitioning the input space into mutually exclusive regions, then it seems as this simple
approach is useful.

Then we may ask if we can do this better? In the beginning we found it very hard to
do exact calculations of especially the variance of the IC. It was encouraging to find, which
was shown in section 2 and also in [KO98], that in case of the logarithmic IC we could
express the solutions in exact analytical forms. These will be considered in the fortgoing
work, when the software has been adapted to collect the covariant terms as well.

To be able to propagate propabilities and to calculate variances of posterior output
distributions conditioned on a set of inputs we have so far used the non logaritmic Wj;,
whose variance now may be better approximated. We yet don’t know if it is reasonable to
find an exact expression for the conditioned output probability distribution, or simplified, its
variance. Otherwise we could probably do fairly good by numerical integration to find these
variances, which would, however, require a tremendous computational power. It can surely
be done and we will look upon improving, e.g. expectation values over joint distributions
by numerical methods.

The goal here, was, however to find a more or less neural network like solution to
the variance problem. There are statistical methods being developed that may do better in
approximating the variances like “saddle point approximations for statistical series” [Kol97].
Such methods may still become simple enough to treat them in a neural network like manner.
We do not, however, consider this a “holy” condition that the solution has to be a neural
network as long as it works for our purpose, even if the neural network approach is both
computationally and architecturally efficient. Our goal is merely to be able to propagate
complete distributions one day, like the work being done within the Bayesian network area,
where Gibbs sampling is used for that purpose, like in the program BUGS. This kind of
technique is, however, at the moment, too computationally extensive to be used in our data
mining application.
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We are happy to see that our approach help in giving earlier and more efficient sig-
nalling of suspected adverse drug reactions. This application is dealt with in more detail in
[BLE*98]. The method is now (spring 1998) taken into usage for filtering of adverse drug
reaction reports to produce warning signals on new unknown reactions when they have
become significant.
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Abstract

Objective: The database of adverse drug reactions (ADRs) which is held by the Uppsala
Monitoring Centre on behalf of the 47 countries of the WHO Collaborating Programme for
International Drug Monitoring contains nearly two million reports. It is the largest database
of this sort in the world and about 35 000 new reports are added quarterly. The task of
trying to find new drug-ADR signals has been carried out by an expert panel, but with such
a large volume of material the task is daunting. We have developed a flexible, automated
procedure to find new signals with known probability difference from the background data.
Method: Data mining, using various computational approaches, has been applied in a variety
of disciplines. A Bayesian Confidence Propagation Neural Network (BCPNN) has been
developed which can manage large data sets, is robust in handling incomplete data, and
may be used with complex variables. Using information theory, such a tool is ideal for
finding drug-adverse reaction (ADR) combinations with other variables, which are highly
associated compared to the generality of the stored data, or a section of the stored data.
The method is transparent for easy checking and flexible for different kinds of search.
Results: Using the BCPNN some time scan examples are given which show the power of
the technique to find signals early (captopril-cough) and to avoid false positives where a
common drug and adverse reactions occur in the database (digoxin-acne; digoxin rash). A
routine application of the BCPNN to a quarterly update is also tested showing that 1004
suspected drug-ADR combinations reached the 97.5 % confidence level of difference from
the generality. Of these, 307 were potentially serious ADRs, and of these 53 related to new
drugs. Twelve of the latter were not recorded in the CD editions of The Physicians Desk
Reference or Martindale’s Extra Pharmacopoea or appeared in Reactions Weekly online.
Conclusion: The results indicate that the BCPNN can be used in the detection of significant
signals from the data set of the WHO Programme on International Drug Monitoring. The
BCPNN will be an extremely useful adjunct to the expert assessment of very large numbers
of spontaneously reported adverse drug reactions.

Key words: Bayesian, neural, network, adverse, drug, reactions.
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1 Introduction

It is in the very nature of drugs that they will cause adverse reactions. However, the
incidence rates of specific adverse drug reactions vary considerably from drug to drug. In
the same way there will always exist certain high risk groups of adverse drug reactions
(ADRs) with specific drugs. The WHO Database is the largest international database
of case reports of spontaneous reporting of suspected ADRs. This database, held by the
Uppsala Monitoring Centre (UMC), now contains nearly two million reports of adverse drug
reactions. One of the main responsibilities of the UMC is to produce signals, according to the
accepted WHO definition: ‘Reported information on a possible causal relationship between
an adverse event and a drug, the relationship being unknown or incompletely documented
previously. Usually more than one report is required to generate a signal depending on the
seriousness of the event and the quality of the information’[1]. The current procedure of
signal generation is as follows: On a quarterly basis lists of potential drug-ADR problems
are generated on new reports received at the centre. A panel of experts are then sent data
on these associations, and asked to comment on them. From these comments a final list
of signals is generated which is then circulated to the National Pharmacovigilance Centres
as well as the expert panel. It is then the responsibility of individual National Centres to
react to each signal as they see fit [2]. There are obvious limitations in the current system.
Experts are only able to consider a finite amount of data in the time available and the data
considered could be incorrect or more likely incomplete. Also the experts’ assessments are
based on judgement as well as prior knowledge, which creates a bias towards discovering
signals in those drug-ADR associations that are already suspected, or have been highlighted
for other reasons [3]. Many other approaches have been made to the problem of optimising
the signal generation process and have been well reviewed by B gaud et al [4]. However,
it has been clear for many years that an automated signalling system would improve the
current system considerably [5], but the size of the database has made it impossible to
consider all possible drug-ADR combinations in a routine automated way. We needed a
system with large computational power to consider all possible links in the database of
nearly two million records, each with, currently, 49 fields. The advances in information
technology, in combination with the well-established theory of Bayesian statistics, have
allowed us to develop a data mining system based a Bayesian neural network. This method
helps to minimise the limitations of the current system as all drug-ADR combinations are
considered in an unbiased manner. Strong associations between specific drugs and specific
ADRs will be highlighted. Signals, which will have been generated without either external
prompting or prejudgement, can then be investigated further.

2 Methods

1 The WHO Database

The WHO database consists of nearly two million individual case reports of suspected ad-
verse drug reactions for specific, but anonymous, patients. These reports are provided by
doctors and other health professionals throughout the world. They contain administrative
data, patient data, ADR data, medication data and additional information. In total there
are 49 different fields, although not all fields are filled in on each case report. For example
only approximately 10 % of case reports received at the centre have the fields for onset,
treatment, indication, outcome, dose, age and sex all filled in. The drug information states
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the drugs taken by the patient, their respective quantities and duration of use. Drugs specif-
ically suspected of causing the reported adverse reaction are also indicated as S (suspected)
or I (interacting). Concomitant medication is recorded as O (other).

2 The Bayesian Confidence Propagation Neural Network

Neural Networks [6] are built from biologically inspired computing elements, neurons, which
are coupled into networks. These neurons are simple, but when used in combinations, they
can perform complex tasks like pattern recognition and diagnosis [7]. Each neuron receives
an external input as well as several inputs from other neurons, each with an attributed
weight in the network. The combination of all the inputs and their respective weights to a
specific neuron when summed together and added to a bias value, generates a single output.
This output then acts as one of the inputs for the other neurons in the network. The network
we use is called a Bayesian Confidence Propagation Neural Network (BCPNN)[8], it is a
feed forward Neural Network where learning and inference are done using the principles of
Bayes Law. For the work presented in this paper we use it as a one layer model [9], although
it can be extended to a multilayer network [10]. Such a multilayer network will be required
in further investigations of combinations of several variables in the WHOQO database and has
already been successfully applied to areas like diagnosis [11], expert systems [12] and data
analysis in paper and pulp manufacturing [13].

The main advantages with BCPNN, as for many other Neural Network architectures, are
that they are self organizing and suitable for implementation on parallel computers. They
also provide an efficient computational model which performs well on sequential machines.
Another advantage with BCPNN is the simple interpretation of the weights as probabilistic
entities. The information stored as the weights in the BCPNN is used here for quantifying
drug-ADR dependencies.

This Bayesian neural network has the computational power to consider all links, and the
ability to highlight potential signals. The network is transparent, in that it is easy to see
what has been calculated and robust, in that valid, relevant results can still be generated
despite missing data. This is extremely advantageous as most reports in the database
contain some empty fields. The results are reproducible, making validation and checking
simple. The network is easy to train; it only takes one pass across the data which makes it
highly time efficient. Searches through the database are done quickly and efficiently using
a sparse matrix method. This method utilises the fact that a relatively small proportion of
all possible drug-adverse reaction combinations are actually non-zero in the database.

3 The Bayesian approach to signal generation

In the WHO database all adverse reactions are reported with a specific drug or set of
drugs. A drug is therefore associated with, that is, occurs on the same report as, all ADRs
a certain number of times between zero and C (where C is the total number of reports in
the database). The number of times a specific drug-ADR combination (c;;) occurs in the
database is clearly dependant on the number of times the drug itself is reported throughout
the database, as well as the total number of reports of that ADR. The absolute value
of ¢;; is, in itself, far from ideal in predicting the strength of association of a drug-ADR
combination. We are in essence looking for values of c¢;; which are higher than we would
expect from the values of both ¢; (the number of reports of a specific drug in the database)
and ¢; ( the number of reports of a specific adverse drug reaction in the database).
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For any individual report in the database, there is a certain probability that a specific
ADR is listed on it - the ‘prior probability’. If that case report has a specific drug on it, the
probability of the ADR now being present could be different - the ‘posterior probability’.
If the posterior probability is higher than the prior probability - then the presence of the
drug on the report has enhanced the chance of the ADR being present, and the drug-ADR,
pair are present together in the database more often than expected.

Bayes Law states:

P(A,D)

PAID) = =555

This can be rewritten in the form:
P(A,D)

P(AID) = P(4) poos s

where P(A/D) is posterior probability, the probability of a specific adverse reaction being
present on a report given the information that a specific drug is listed on it; P(A) is prior
probability, the probability that a specific adverse reaction is present on a report; P(D) is
prior probability, the probability that a drug is present on a report; P(A, D) is coincident
probability, the probability that both a specific drug and an adverse reaction are present
on the same report. Thus the prior probability and the posterior probability are related by
a symmetrical factor [P(A4, D)/P(A)P(D)].

Mutual Information, as defined in Information Theory [14], measures the amount of
information we get about one variable (X) when we have information about the state of
another variable (Y), that is measures the strength of association between two variables X
and Y:

1X,Y) =YY P(a,y)log %

where = represents a specific state of the variable X, and y represents a specific state of
the variable Y. In Information Theory all measures of information are logarithmic, so that
information from independent events are additive.

If we consider the variables Captopril and coughing in the database, both variables are
binary in that both can have one of two states, that is either to be present on a report
or not. There are four possible combinations of the states of the two variables, which
when all are combined give the Mutual Information for Captopril and coughing. The
Information Component (IC) is the strength of the association between a specific state in
each of two variables and is the logarithmic form of the symmetrical factor relating the
prior and posterior probability stated previously:

P(z,y)
10=1% payp(y)
Thus there are four ICs which refer to the different combinations of the variables Captopril
and coughing.

In this paper we are only interested in the strength of the IC between specific drugs and
adverse drug reactions present on the same report, not the other three possible ICs for this
combination of binary variables. For the rest of this paper the IC will specifically refer to
this particular combination of states of the drug and adverse reaction, which adds to the
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robustness and simplicity of the method as only positive reports of drug or adverse reaction
need be counted (as well as the total number of reports). When the IC is positive for a
drug-ADR association, this implies that the drug-ADR pair are more strongly associated
than expected, compared to the ¢; and c; values and the rest of the database, the reverse
applies to negative values, and IC values close to zero represent independence between
the drug and ADR - that is the prior and posterior probabilities are the same, additional
information about the drug does not change the probability of the ADR being present on
a, specific case report. We therefore intend to search the database for positive values of IC.

In the BCPNN the weight between a neuron in the adverse reaction layer and a neuron in
the drug layer is equal to the IC for that specific drug adverse reaction combination. There
is a ‘finite’ probability of any drug being reported with, that is suspected of being associated
with, any ADR. This probability may be extremely small so it may never have occurred
much less been reported. The pharmacovigilant community, by increasing awareness and
reporting rates, is trying to obtain, by a variety of methods, as accurate an estimate of this
probability as possible. The IC that we calculate is a measure of the strength of association
of a drug adverse reaction combination, as the IC is only calculated on a finite number of
reports it is merely an estimate of the real ‘IC’, the more reports we have the more accurate
this estimate becomes. In our database the numbers of reports of individual drugs, ADRs,
and drug-ADR combinations vary enormously. However the higher the values of ¢;, ¢; and
¢;;j the more accurate an estimate of the IC we have. Thus for every drug-ADR combination,
we determine an interval estimate of the IC as a measure of certainty of the value of the
IC. The combination of the absolute value of the IC and its interval estimate gives us an
estimate of the probability of a specific association between a drug and ADR based on
the spontaneous drug reports in our database. Having highlighted the association it can
then be investigated further using the current signalling procedure in place at the Uppsala
Monitoring Centre.

The Bayesian approach is based on the following: an estimation of a prior probability
is made. This estimate is then improved when some new information is received by cal-
culating a posterior probability based on both the prior probability estimate and the new
information. This process is then repeated and the estimate will be constantly improved as
more information is obtained.

As we do not know the ‘real’ probability of p(4), p(D) or p(A, D), we assert a beta
distribution [15] for each probability. From these distributions we calculate the ‘expectation
values’ and variances of the beta distribution of each variable. The expectation value of
each beta distribution is the estimate of the probability. As the counters ¢;, ¢;, ¢;; and C
increase we calculate new beta distributions for p(A), p(D) and p(A, D), based on the prior
distributions and these new counters, and therefore new expectation values and variances
for each of the three. These distributions become narrower as we obtain more information
(ie the variance always decreases). As the counters increase in value, the previous posterior
distributions become the new prior distributions, and a new set of posterior distributions
can be calculated.

This Bayesian approach allows us to estimate the probabilities, and hence the IC, even
for low counter values. The calculation of the variance for p(A4), p(D) and p(A4, D) as well
as the IC provides an indication of the certainty of these probability estimates.
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The Gaussian approximation of calculating the variance of a function of many variables
allows us to calculate the variance of the information component (V' (IC)) from the variances
of p(A), p(D) and p(A, D). Using this method, the variance of the IC is calculated by:

1 )2[ C—cij +v—j C—-ci+a—qo C—cj+pB—p;
(

V(IC)“(log cij +7i) L+ C+7) " (e + )1 +C+a) (¢ +B)(1+C +B)

where oy and g are factors in the beta distribution of p(A) and p(D) and v1; and ~ are
the corresponding factors for the joint probability p(A4, D) [15]. Both pairs of factors reflect
our beliefs in the probabilities given by the prior beta distributions. An a priori assumption
is made of equal probability distribution for p(A) and p(D), as any probability is as likely
as any other without further information, in a beta distribution this corresponds to the
constants a; and ag (where @ = a; + ag) being defined as: @ = a1 + ap = 1. 11 and v
define the joint beta distribution p(A4, D).

We set v11 = 1 and define v (Orre et Lansner personal communication) by:

Y11

7= p(A)p(D)

such that the IC tends to zero as ¢;; and C tend to zero, because we assume an independent
relationship between a drug-ADR when we have no reports of the drug or the ADR.

4 TImplementation of BCPNN on the WHO database

All experiments done using the BCPNN followed the same procedure: To calculate the
ICs between all drugs and all adverse reactions in the database we needed to calculate ¢;,
¢; and ¢;; for all possible combinations. Thus we specified that we wanted to associate
all drugs recorded as ‘suspected’ or ‘interacting’ with all adverse reactions, by giving a
layer specification to the ANN software, such that one layer contained neurons representing
drugs in the database and another layer contained neurons representing adverse reactions.
The relevant adverse reactions and drugs were then specified and a counter generated for
each. The network was trained by reading from the database and updating these statistical
counters. Training and learning in the network occurred during the same run over the whole
database and a matrix was generated containing the c¢;, ¢; and ¢;; values for the specified
drug-ADR combinations, which could then be further analysed. This matrix was limited
in size by the use of the sparse matrix method, which creates the statistical counters as
they are required, hence only non-zero counters occur in the database and run times are
shortened considerably. Having generated the counters, the ICs and their corresponding
95 % confidence limits are then calculated.

In order to generate signals on the basis of ICs and their associated interval estimates,
it was important to demonstrate that the ICs increased in value over time for a signal as
the data on the particular association increased. Several time scan experiments were done
by specifying a particular drug-ADR combination, and calculating the ICs and confidence
limits at quarterly time intervals.
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The results were graphed. From these time scans three examples were chosen to illustrate:

e When a signal of high probability would have been generated on current informa-
tion compared with the world literature reports cited in MEDLINE (captopril and
coughing).

e The behaviour of false positive signals over time for both a drug-ADR association that
has a low ¢;; value (digoxin and acne) and a drug-ADR association that has a high
¢ij value (digoxin and rash). Digoxin is one of the most commonly reported drugs
in the database. However, digoxin is reported exceptionally rarely with the common
adverse reaction ‘acne’, whereas digoxin and the commonly reported ADR rash are
frequently reported together

In a routine operation for finding signals, we intend to do quarterly updates. All ADRs
and drugs that occur in the latest quarterly production will be selected, and the effect of
these newly received case reports on drug-ADR associations throughout the database will
be examined. To test this we selected a test set of case reports, approximately 36000 from
the end part of 1995, to represent a new quarter of reports being received at the centre (all
later reports were excluded completely from this test), and selected all drugs and ADRs
that occurred in this list by doing the search on the whole database, up to but excluding this
‘test” quarter, we then repeated the scan having added the ‘new’ data set. The ICs and their
associated 95 % confidence limits were then compared before and after the new information
was added. The criterion for a signal was drug-ADR combinations where the lower 95 %
confidence limit of the IC changed from a negative to a positive value on addition of the
test quarter. That is all drug-ADR combinations where the probability of a relationship
between the drug-ADR based on the spontaneous reports in the database changed from
below 0.975 to above, on addition of the test quarter.

3 Results

1 Example of early signal detection

Figure 1 shows the time scan obtained when a run was done of captopril (reported as
‘suspected’ or ‘interacting’ drug) and coughing from the first quarter of 1979 to the first
quarter of 1996. The IC increases considerably in value over time, as the number of reports
of the drug-ADR (c¢;;) association increases, as also the total numbers of reports of the
drug (¢;) and ADR (c¢;) increase, so the interval estimate of the IC decreases, that is our
estimate of the ‘real’ IC becomes more precise. The combination of these two effects is
that the lower 95 percent confidence limit increases in value markedly towards and above
zero. As can be seen on Figure 1 the lower 95 percent confidence limit crosses above zero
at time 81/3, that is once the reports from the third quarter of 1981 had been added. At
this time there were three reports of this association in the database. When this lower 95
percent confidence limit is equal to zero, This is a very strong association statistically which
demands to be investigated pharmacologically, clinically and epidemiologically. An isolated
literature report of this now well known signal was published in Dutch in July 1983 [16],
but the signal was not widely reported in the literature until 1986. It should be noted that
the confidence interval estimate of an IC estimate becomes smaller as we base the estimate
on more samples, and as the IC value stabilises. A decrease in the confidence interval of ICs
as time passes is a property of all drug-ADR time scans. Thus a stabilised positive value
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IC for a drug-ADR association will imply an ever increasing likelihood of a real signal as
further reports are added to the database.

CAPTOPRIL - COUGHING
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Figure 1: The change in IC between 1979 and 1996 for the association captopril-coughing.
The IC is plotted at quarterly intervals with 95 percent confidence limits shown.

2 Examples of false-positive signal avoidance

1) The time scan of digoxin (suspected or interacting) against acne from the first quarter
of 1967 to the start of 1996 is shown in figure 2. The IC decreases throughout the time
scan, as no reports are received of this association - apart for a slight increase after quarter
1988/4 when the combination was reported once. As the associated 95 percent confidence
interval diminishes with the numbers of reports of drug and ADR increase, this makes our
IC estimate better and demonstrates the diminishing possibility of a causal relationship
between digoxin and acne.

2) When a time scan of digoxin and rash is observed (Figure 3) the IC increases initially
(1968), indicating a trend to a possible association (but with a large 95 percent confidence
interval), but then decreases markedly towards a distinct negative value. Also the 95 percent
confidence interval decreases rapidly because of the rate of increase of the number of the
reports of digoxin, rash and digoxin-rash association. This definite negative IC represents
a situation where although digoxin and rash are reported together often (high c¢;;), yet
relative to the values of ¢; and c¢; they are not. Thus this association does not stand out
in our database as being more common than the generality. The probability of rash being
reported on a specific case report with an unidentified drug is not increased if the drug
is digoxin. This means that in our database there is no unexpectedly strong association
between digoxin and rash. Therefore, this would not be signalled on our criteria.
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DIGOXIN - ACNE
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Figure 2: The change in IC between 1968 and 1996 for the association digoxin-acne. The IC
is plotted at quarterly intervals with 95 percent confidence limits shown.
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Figure 3: The change in IC between 1968 and 1996 for the association digoxin-rash. The IC
is plotted at quarterly intervals with 95 percent confidence limits shown.
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3 Quarterly update test

In order to simulate a regular quarterly screening of the database, an examination of the
signalling criteria was done using historic data from a 3-month batch of 36000 reports from
the start of 1996, using the procedure described above. In this way a list was generated
containing 1004 different drug-ADR associations, where the lower 95 percent confidence
limit of the IC estimate crossed above zero as a consequence of the addition of the ‘test’
quarter. This list contained 307 associations of ADR terms in the WHO ‘Critical Terms
List’. A ‘critical’ term is defined as referring to or possibly being indicative of a serious dis-
ease state, and have been regarded as particularly important to follow up. A serious disease
is one that may be fatal, life-threatening, causing or prolonging inpatient hospitalisation,
or resulting in persistent or significant disability or incapacity. Of these 307 associations,
53 associations were of ‘new’ drugs, that is drugs first reported since the start of 1990.
These 53 associations were compared with entries for the relevant drugs in the latest edi-
tions of Martindale (Micromedex Healthcare Series Volume 93) and the Physicians Desk
Reference Drug Interactions, Side Effects, Indications, Contraindications System TM, May
1997 (PDR), and Reactions online (ADIS Press). Of these 53 associations there were 12
that were not recorded in Martindale, PDR, or Reactions at the time of writing, (table 1).

Whilst the procedure is close to the routine previously used to find important signals,
no clinical assessment has been made to exclude confounding drugs or disease (which may
account for the relationship between fluvastatin and myocardial infarction, for example). On
the other hand some judgement has been made over the selection of the final 12 associations
on the basis that the reported term in the database was notably different from any described
in the literature sources used. It is noteworthy that, whilst the association of alendronic
acid and oesophagitis was well referenced, the more serious ulceration was a topic of concern
and debate at the last annual meeting of the national centres participating in the WHO
Programme for International Drug Monitoring, October 1997, Geneva.

Drug Adverse reaction Comments™
Clarithromycin Larynismus -

Renal failure acute -
Losartan Cardiac failure -

Pulmonary oedema -
Peripheral ishaemia -

Alfuzosin Coma -
Angina pectoris Martindale refers to prazosin for adverse

effects; chest pain mentioned for prazosin

Sertraline Arrhythmia -

Fluvastatin Myocardial infarction -

Venlafaxine Delirium Reactions mentions hypomania in August 1997

Measles,mumps Paralysis -

and rubella vaccine -

Alendronic acid Oesophageal ulceration  Oesophagitis listed in Martindale,one case
of oesophageal ulcer reported in Reactions
May 1997

* In the absence of comments, there has been no mention of the listed reactions in the reference

Table 1: Signals on new drugs (record in the WHO database after 1990) and WHO “Critical
Terms” identified in test run on data from the end of 1995.
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4 Discussion

Since the instigation of the WHO drug monitoring programme the potential benefits and
need for an automatic signalling system were envisaged [5]. The BCPNN, based on Bayesian
statistics and neural network architecture and methods, allows us to find and quantify rela-
tionships between two or more data fields, such as a drug and ADR, that differ significantly
from the background of inter-relationships in the database. We are thus able to highlight
potential signals by the behaviour of a selected IC over time, and have demonstrated that it
will be possible to find such relationships at earlier stages in the drugs life than at present.
As such it is a suitable tool for the signalling of adverse drug reactions.

The limitations of spontaneous reporting of adverse drug reactions, from varying degrees
of under reporting, to delays in reporting, to misreporting, to incomplete information, are
well understood [17]. Despite the limitations spontaneous reporting has established itself
as an effective tool in drug monitoring, once these limitations are appreciated [18]. The
intention behind a signal is to bring a particular drug-adverse reaction to the attention of the
pharmacovigilant community as quickly as possible on the basis of spontaneous ADR data,
so that it can be investigated in more detail to maximise drug safety. A signal is not ‘right’
or ‘wrong’. It is merely a suggestion of a possible problem, aimed at highlighting potential
drug problems not discovered in clinical trials. On the basis of our proposed signalling
production criteria, we would have produced a signal relating captopril with coughing with
considerable confidence in the strength of the reported relationship before the third quarter
of 1981. That would have been two years in advance of its first mention in the literature.
We have also shown that false-positive signals can be avoided.

The quarterly update demonstrated the BCPNN system’s ability to highlight potential
signals from a large amount of data and verified that computationally we are able to search
for IC values through the whole database. This new system is to be used in conjunction
with the current signalling process. All drug-ADR pairs will be considered in the quarterly
updates. The quantitative certainty of substantial difference from the background of reports
in the database attributed to some drug-association will highlight them for the benefit of
clinical reviewers. This will emphasise the need for further work on the reported signal.
However, a high IC, like strong statistical correlation, does not imply that there is a direct
causal relationship between eg. A drug and a reaction, it merely suggests the possibility of
one.

The environment of our database is dynamic. Many factors may influence the database:
new drugs are frequently added to the database, new countries start reporting, drug uses and
advertising approaches will change. Thus there is a shifting background of associations mean
that ICs and their distributions will change over time as the database gradually evolves,
irrespective of additional data affecting any two fields. The problem of getting early and
useful ADR signals from 2 million case records is like finding the proverbial ‘needle in a
haystack’. Data mining is like a magnet in providing a powerful tool for finding signals.
Then the whole database becomes the control, so that any new association highlighted can
be contrasted, with a determined level of significance, against the background of all reported
information. In this case the ‘haystack’ size becomes an advantage in providing a stable
norm for adverse drug report experience.

This BCPNN methodology will continue to be developed: Further investigation of drug-
ADR associations will be possible by examining the behaviour of the combined IC of more
than 2 fields, such as ADR and drug with other reported fields like age, gender and drug
indication, to arbitrary complexity. Also, other categories of ‘C’ than the total database



4. DISCUSSION 51

could be used eg. All reports on antibiotics or all reports on females.

All searches of the database so far have been for drug-ADR associations where the drug
has been reported as being ‘suspected’, that is reports where the drug has been recorded as
concomitant medication have been excluded. In future work investigation will be made on
the impact of the drug causality on the possibility of a signal, since clinical/pharmacological
preconceptions in drug causality should be avoided in determining new signals, as they re-
flect biased assessment of the drug-ADR association. There may be drugs which are not
known to cause an adverse reaction, and are inappropriately encoded as ‘other’ drugs. How-
ever many false signals would occur, many for those drugs used frequently in combination
with drugs known to cause specific ADRs.

As described above the test quarterly update was thresholded using a positive value of
the lower 95 % confidence limit of the IC as the criteria for a reasonably certain signal -
further investigation will be done to verify or improve this thresholding level. Although the
existing BCPNN is robust in situations where there is missing data, some improvements
can be made by inference calculations for the incomplete fields. This could improve the
sensitivity of the system. This new methodology is intended to enhance, not replace, the
systems that are currently used to detect signals. The value of experts in the field cannot be
overestimated, as the qualitative risk-benefit assessment of potential signals is an essential
step in the process of their detection and evaluation.



52

SUPPLEMENT II: A DATA MINING APPLICATION

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Delamothe T (1992) Reporting adverse drug reactions. Br Med J 304: 465

Fucik H, Edwards IR (1996) Impact and credibility of the WHO adverse reaction
signals. Drug Information Journal 30: 461-464

. Meyboom RHB, Egberts ACG, Edwards IR, Hekster YA, de Koning FHP, Gribnau

FWJ (1997) Principles of Signal Detection in Pharmacovigilance. Drug Safety 16(6):
355-365

See: Methodological approaches in pharmacoepidemiology: application to sponta-
neous reporting (1993). B gaud B, Chaslerie A, Fourrier A, Haramburu F, Miremont
G (eds.) Elsevier Science Publishers BV, Amsterdam, The Netherlands.

. Finney DJ (1974) Systematic signalling of adverse reactions to drugs. Meth Inform

Med 13(1): 1-10

. Cross SS, Harrison RF, Kennedy RL (1995) Introduction to neural networks. Lancet

346: 1075-1079

Hertz J, Krough A, Palmer RG (1991) Introduction to the theory of neural compu-
tation. Addison-Wesley, Redwood City, California

. Lansner A, Holst A (1996) A higher order bayesian neural network with spiking units.

Int J Neural Syst 7(2): 115-128

. Lansner A, Ekeberg (1989) A one-layer feedback artificial neural network with a

bayesian learning rule. Int J Neural Syst 1(1): 77-87

Holst A (1997) The use of a Bayesian neural network model for classification tasks
[dissertation]. Stockholm: Royal Institute of Technology

Holst A, Lansner A (1996) A higher order neural network for classification and diag-
nosis. In: Gammerman A (ed) Computational Learning and Probabilistic Reasoning.
John Wiley & Sons Ltd, Chichester, pp199-209

Holst A, Lansner A (1993) A flexible and fault tolerant query-reply system based on
a Bayesian neural network. Int J Neural Syst 4(3): 257-267

Orre R, Lansner A (1996) Pulp quality modelling using bayesian mixture density
neural networks. J Syst Eng 6: 128-136

Pearl J (1988) Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann
Publishers, Inc., San Francisco

Heckerman D (1997) Bayesian networks for data mining. Data Mining and Knowledge
Discovery 1: 79-119

Knoben JM (1983) Prikkelhoest door gebruik van captopril. Nederlands Tijdschrift
voor Geneeskunde 127(29): 1306

ten Ham M (1992) WHO’s role in international ADR monitoring. Post Marketing
Surveillance 5: 223-230

Edwards IR, Wiholm B-E, Martinez C (1996) Concepts in Risk-Benefit Assessment.
Drug Safety 15(1): 1-7



Supplement 111

Modelling With Probabilities

93



54 SUPPLEMENT III: MODELLING WITH PROBABILITIES

Pulp Quality Modelling Using
Bayesian Mixture Density Neural Networks
Roland Orre and Anders Lansner

SANS, Dept. of Numerical Analysis and Computing Science
Royal Institute of Technology, S—100 44 Stockholm, Sweden
E-mail: orre@sans.kth.se, FAX: +46-8-790 09 30

Abstract

We model a part of a process in pulp to paper production using Bayesian mixture
density networks. A set of parameters measuring paper quality is predicted
from a set of process values. In most regression models, the response output is
a real value but in this mixture density model the output is an approximation
of the density function for a response variable conditioned by an explanatory
variable value, i.e., fy (y|X = ). This density function gives information about
the confidence interval for the predicted value as well as modality of the density.
The representation is Gaussian RBFs (Radial Basis Functions), which model the
a priori density for each variable space, using the stochastic EM (Ezpectation
Mazimization) algorithm for calculation of positions and variances. Bayesian
associative connections are used to generate the response variable a posteriori
density. We found that this method, with only two design parameters, performs
comparably well with backpropagation on the same data.

keywords mixture density neural network function approximation

1 Introduction

The fundamental problem we look upon here is function approximation from a set of ex-
planatory (X) and response (Y) variables. The purpose is to model a process, which is
assumed to be determined by these variables. We do not handle any temporal behaviour of
the process here. In the initial phase of this project, which was done in cooperation with
STORA Teknik AB, we used feedforward networks trained with the error backpropagation
(BP) algorithm [7]. In the continuation of this project, which was done in cooperation with
STFI (Swedish Pulp and Paper Research Institute) we developed a mixture density model
for function approximation [8].

Mixture density networks have been used for, e.g. classification of speech segments and
satellite image pixels [10] and classification of globins in protein sequences [6]. Function
approximation has been done by, e.g. predicting the a posteriori density [1] or using the EM-
algorithm directly [2]. The method of predicting the a posteriori density using a Bayesian
associator as hidden layer has not been much used, as far as we know, but has earlier been
suggested by, e.g. [3] and [6]. The prediction of the density function for the response value
gives a way to detect ambiguous response values as well as to get a quality measurement
of the prediction. In figure 1 a sketch of the density method we propose here is presented.



2. DATA AND EXPERIMENT SETUP 55

We use a stochastic EM-algorithm [9] for the RBF-units and a BCPNN (Bayesian Confi-
dence Propagation Neural Network), which have earlier been successfully used for pattern
completion [2] and classification [4], to associate an explanatory conditioned density with a
response density function.

E(yx=x)

a o priori b a posteriori
density density

£, () £ (yx=x)

P Y-samples

4
©g

X1

Figure 1: An overview of the density method. a: Training phase: We let a set of Gaussian
density functions (w;) model the density of a set of data samples in explanatory (X) and
response (Y) variable spaces. When an X-sample is drawn from the process w; in explanatory
space there is a certain probability P(w, | w;) that a Y-sample is drawn from the process
wq in response space. b: Recall phase: When a certain X-sample is input we get a response
probability P(w;|X = z) from each of the explanatory processes. These probabilities are
propagated to the response space and cause the response variable density to be conditioned
by the explanatory value X=z.

2 Data and Experiment Setup

The data we have been working with here is a set of process input parameters being au-
tomatically measured and a set of process outputs being manually measured in lab. In
table 1 are the names and ranges for these variables listed. There are three different pulp
types where the input variables %pulp typel, %pulp type2 and %pulp typed are percentages
of their contents in the pulp mix. There are two fiber length classes % middle and % long
were the measure is percentage of the length class versus other fiber length classes. The
drain-time is a measure of how long time it takes for standardized piece of pulp to drain.
The drain-speed is a measure of how quick the water flows out of the pulp. The variables
%medium, %long, drain speed and drain time are being automatically measured with an
interval of about one hour. The manually measured output values (y) being predicted, here
tear and tensile, are measured by lab experiments about once a day.
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In figure 2 we see the experimental setup used for prediction of these outputs. The pulp
types and fiber classes are fed to the input layer. From the first hidden layer with RBFs
we get the probabilities P(w;|X = z), i.e. probabilities for the z-values to belong to one
of the “classes” w;. The weights (P(wq|w;) between the hidden RBF layer and the density
output layer associates a class w; in the input layer with a class wy in the output layer. A
summation in the density output units gives the probabilities P(wy|X = ), which is the
probability for a certain density function w, to be the generating response process when a
certain explanatory sample value x is fed into the input layer.

The output (y) is calculated as the center of mass for the active output densities. To be
able to estimate a confidence interval for this output there is also an integration (formula 16)
being performed, which is not shown in figure 2. In the following two chapters is a brief
theoretical description of the a priori and a posteriori density estimations given.

Input Hidden RBF Density out Expectation value out

% pulp type 1 -'/,'
Ve

% medium y
% long
drain speed A‘\
® .‘V
drain time <\
P, | X=x) Plwgl X=X) E(y | X=x)

Figure 2: Setup of experiment. At left we input the process parameters, at right we output
the response variable (e.g. y=tear or y=tensile) value. The input units just distribute the
explanatory values to all hidden RBFs. Outputs from the hidden RBF units are P(w;| X = z),
i.e. probability that value x belongs to class w;. The weight values between the hidden RBF's

and the density output layer are P(wgq|lw;) = %ﬁ%. For a formal description see (15) .
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parameter range

% pulp-typel | 0 --- 100
% pulp-type2 | 0  --- 100
% pulp-type3 | 0  --- 100
% middle 222 --- 309
% long 51 .-~ 75

drain-time 29.2 --- 459
drain-speed 255  --- 367
tear 116 --- 16.5
tensile 60.8 --- 84.7

Table 1: The set of variables used listed with
their active ranges. The ones above the line
are inputs, i.e. explanatory variables. The re-
sponse variables tear and tensile below the line
are the ones being predicted.

3 A Priori Density Approximation

The o priori density functions for explanatory (fx(x)) and response(fy (y)) variables are
composed of component densities w; (1).

n

@) =3 P ko) = 3 aiple,0:) = [e.g.Gaussian], = 3 Plwi) N (z, i, 02) (1)
=1 =1

i=1

Each component i is characterized by a set of parameters, which for the Gaussian case would
be a covariance matriz C or a variance o? for one dimensional or symmetrical densities,
a center value p; and a probability P(w;). These parameters are here estimated by the
EM algorithm. We have a set of N samples {z1,...,2,} which is drawn from a mixture,
f(z), of n density functions (1). By applying Bayes rule about conditioned probability
on the density functions we get an expression for the probability that a certain X-value z
was generated from the component w; (2). Then search the parameters «; and 6; which
maximizes the log-likelihood (L) of the samples under the constraint that the probabilities
a; sum to 1, which can be solved by using the Lagrange multiplier method.

Pw)P(z|lw;))  aip(=,6;) &
P(z) TS a0 1ogL_l;10g fze), @)

If we assume Gaussian component densities we get expressions for estimates of the center
values p; and covariance matrices C; (3) as a set of non linear equations which can be solved
numerically. (C; is the covariance matrix for component i and d is the number of dimensions
for the variable)

P(wilz) =

o Sem Plaler)er o il Pleiler) (@s = i) (@x = p)"

i - i ~ 3
Yy P(wilzi) ey Plwilz) @




58 SUPPLEMENT III: MODELLING WITH PROBABILITIES

A stochastic variant of the EM-algorithm [9], has been used here. Both y; and o? for
N samples of a form which can be rewritten into a recursive expression (4)

N P(w|zi)0 (k)

Ony1 =
. oo Pl
Oy = ZkZINP(W|$k)0(xk) _ P@lanin)f(an) + SN P(wlak)8(wk)
> p=1 Plwlzr) ML P(wlak)

P(w|zn1)0(n11) + Xpcy Pwlzs)bn — Pw|znr)

- N
k:J’;.l P(W|ﬂ}k)

and simplified (5), where the step size 1 causes a competitive update among the units. To
get a smooth start we scale down the step further by 4.
Ont1 =08 +np1(8(xnt1) —ON) , Np = W (5)
k=1 Pwlzr)
The denominator for n (5) can be replaced with a moving average, caring mostly for the L
most recent samples Dy11 = (1=1/L)Dy+ P(w|zn+1)- To further simplify things we may
assume symmetric density functions, then we don’t need the covariance matrix. In the final
incremental update expressions for center value (6) and variance (8) we use an intermediate
estimate of the next value. For the center value (6) this is just the next sample and for the
variance (7) it is the squared distance over the number of dimensions.

pN+1 = MUN FNp1(TNp1 — pN) (6)
6np1 = (ang1 —pn) (@Ng —pn)/d (7)
UJ2V+1 = ‘712\' + NIN+1 (&IZV-H - 012V) (8)

This is an “almost” parameter free algorithm. It needs an initial placement p; and variance
o? for the units but none is “critical”. It is a good strategy to start updating the variances
when the positions have somewhat begun to stabilize. As an example we can, in figure 3,
see how a set of 40 RBFs have adapted to 676 data points forming a square. There is also
an example with two variables of pulp data in the same figure. In the aspect of function
approximation we will get a high resolution where there is a lot of samples. The placement

of the PDFs is not necessarily unique, there may exist several solutions which maximize
the likelihood (2).

4 A Posteriori Density Generation

After having found a model of the a priori density function of a variable we want to find
the a posteriori density function, fy(y | X = z), for a response variable conditioned by a
certain explanatory variable value. We index the explanatory density components with 4
and the response density components with g.

m

fx(x) = ZP(wi)f(xlwi),fy(y) =D P(wg)f (ylwg) 9)

g=1

By applying Bayes rule [p(q|i) = p(¢)p(i|g)/p(i)] to a component density we get an
expression for the probability of an X-value being generated from the component w;, where
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Figure 3: Left: 41 units are adapted to a square distribution. We see the RBF units with
their o plotted as circles and the data samples as dots. Middle: 40 units randomly initialized.
Right: After about 200 iterations the units had become stable in this case.

we can look upon f(x) as a proportionality factor for a certain X-value and thus, use
normalization over all component probabilities for a certain X (10).

i=1

P(wilz) =

Then we want to express the response variable density function conditioned by a certain
X-value (fy(y|X=z)) as a relation between component densities of explanatory variables
(wi) and response variables (wq) (9). We start by rewriting the probability of a response
variable component density (9) being conditioned by an explanatory variable value.

frylX=2) = fy(ylwg) P(w,| X=12) (11)

We then write the probability for a response variable density component conditioned by
an explanatory variable value as a probability relation between explanatory and response
components and explanatory component probabilities conditioned by the same explanatory
value.

The probabilities for w, will only depend on the X-value through the probabilities for
w;. When the P(w;|X=z) are “almost” mutually exclusive we can use “theorem about total
probability” (12) and thereafter Bayes rule (13). The definition of conditioned probability
[p(bla) = p(anbd)/p(a))] under the assumption that w, and w; are independent gives the
expression (14).

PlylX=2) = 3 Plogo)P@iX =2) (12)
= ; P(wq)%P(wﬂX: x) (13)
P(wo&w;)

P(wg) ; WP(WHX: z) (14)
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We can now combine (11) and (14) to get the expression for fy (y|X=z) (15). As was
stated in (10) the P(w;|X=xz) is just a version of P(w;)f(X==z|w;) scaled so that their sum
is normalized to 1. The component density f(z|w;) may be the normal distribution density
function N(z, i, 0?).

& i
PrX=a) = 3 ko) Pl ZP ogh) S PlwlX=2) (15)
Wiq

The expression which is marked W, is similar to the expression which is used for weight
calculation in a one layer Bayesian network for binary pattern recognition [2]. Finally we
want a predicted value as output, which is the expectation value of the response value
density function. This can be calculated by integrating the density function (16) to give “a
center of mass”. In the case with, e.g, Gaussian component densities, which were used here,
we need not do an integration for this. We may just sum the center values p, weighted by
their probabilities (17). We also want some measure of the prediction quality. By integrat-
ing (18) the density function we may estimate a confidence interval (19) for the prediction.

Y
B(y|X=1) = / fr@lX=a)ydy (16)  Fy(y) = / PDy(y|X=z)dy  (18)

(I X=2) =) P(wg|X=2)py (17) 0025 < Fy(y)
Z 0975 > Fylys) [ = ¥ < Yosn <12(19)

5 Response Value Prediction

Oerr =

For response value error calculations we use the standard devi- n noc 2
ation for the difference between actual and desired output as a Z (0 — ’le)
percentage of the used value range (0...1). §; = Yout — Ydesired i= .

In figure 4, we see an example on how the function y = 0.5sin 10z is approximated with 60
explanatory units and 40 response being trained with 960 samples. We added some normal
distributed noise with a standard deviation of 0.07 around the nominal function value. In
figure 5, where we used 150 samples for the training set and 50 samples for the test set,
we see how the performance on training and test set respectively on the same problem as
above varies when the number of explanatory and response units are varied.

This mixture density method is actually symmetrical for predictions X - Y and ¥ —
X, which is illustrated in figure 6 where we first recall Y from X, in the normal way, and
then X from Y. As the function y = sin(z) is not bijective the inverse mapping is multi
valued which results in a multi modal density function.

In figure 7 we see how the estimation of expectation values and the confidence intervals
improves as the number of samples increases for the example above. This is shown with
regularization, described below, for the test set and without regularization for the training
set.
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RECALL TEST 320 SAMPLES
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Figure 4: Left: Training data consisting of 960 samples with a normal distributed noise
(0 = 0.07). Right: Recalled y-value from 320 samples with a network using 60 explanatory
units and 40 response units. The error bars show one predicted standard deviation.
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Figure 5: The performance for training set (left) and test set (right) when we vary the number
of units in explanatory (X) and response (Y) layers. On the x-axis is the number of explanatory
units. The Y units are shown by different curves in the same diagram.

1 Regularization, a Way to Improve Generalization

One way to improve the generalization performance when the RBF-model has been trained
with a sample set which is too small or whose density is not representative for the whole
set is to increase the “fuzziness” in the system by scaling up the variances. The sample
will then be classified as possibly being generated from several close PDFs instead of just
the few closest ones. A method which has proven useful is to increase the variances until
the distance between the input sample vector and the expectation value of the PDFs which
represent this value is minimized, figure 8.

6 Results: Predictions of tear and tenstle

In figure 9 we see a pair of diagrams for the predictions of the two laboratory measured
pulp response variables tear and tensile on a test set. Here is also an estimation of a 67 %
confidence interval for the predicted values shown as error bars. Considering these intervals
they are reasonable sized as they have about the same size as the measurement errors of
the variables [7]. In some cases, like sample 9 for tear and sample 5 for tensile we may get a
very large confidence interval due to the fact that the test sample value is far from any RBF
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Recalled Y versus X on train set Density for recalled X from Y=0.5 Density for recalled X from Y=1.0
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Figure 6: a: A recalled sine function as Y=£(X). b: Recalled density for X when input on Y
is 0.5 (arcsin(Y)). c: Same as b when Y input is 1.

Expectation value error vs #samples, net=60,40

Confidence interval error vs #samples, net=60,40
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Figure 7: Left: The prediction performance of the expectation value improves for a specific
network when the number of samples used for training increases. In this case we could perform
better on the test set with regularization than on the training set without regularization most
of the time. Right: The confidence interval estimation improvement as the number of samples
increases. The two upper curves “TRAIN” and “TEST” show the gerr. “TRAIN-MERR” and
“TEST-MERR” show the average error. The confidence intervals for test set were calculated
after regularization.

center, thus activating most units resulting in a predicted value close to the expectation
value of the a priori density for the response variable.

Representation error versus variance scale
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Figure 8: Left: Dynamic regularization by adapting the explanatory sample “fitness” by
scaling the variances, thus improving the generalization capability. Right: Representation
error vs. variance scaling (golden search used as distance minimizer).

In table 2 and table 3 we see tear, and tensile predicted from the six explanatory variables
shown in table 1. Table 2 shows the performance on training sets and table 3 shows the
performance on test sets. We can see how the prediction performance varies when the
number of units in explanatory and response layer is increased from 10 to 80. The data
sets in these tests was randomly partitioned into 75 % training and 25 % test data.
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As a comparison with the results in tables (2 3) the best BP results obtained on test sets
for these variables earlier [7] (search through many architectures) was 11.7 % for tear and
10.8 % for tensile. This indicates that this mixture density method performs equally well
as BP considering the predicted values when the optimal architecture for a certain data set
is used.
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Figure 9: Two test sets with prediction outputs for tear and tensile with estimated 67%
confidence intervals (one standard deviation) plotted as error bars. The predicted values are
marked with ¢:s (with bars) and the process output values are marked with +:s. In some cases
like sample 9 for tear and sample 5 for tensile we see a large confidence interval estimation
due to the input vector being far from all the RBF units.

tear-TRAIN tensile-TRAIN tear-TEST tensile-TEST
size Oerp size Cerr size Oerp size Oerr

80-80 | 8.01 80-20 7.77 40-10 | 11.86 20-80 | 9.89

80-10 | 8.43 80-80 | 8.09 40-20 | 13.81 20-40 | 9.90

80-20 | 8.51 40-20 | 8.22 20-10 | 15.29 20-20 | 10.09
80-40 | 8.94 80-40 | 8.56 40-80 | 15.34 20-10 | 12.02
40-40 | 9.33 40-80 | 9.13 20-40 | 15.63 10-10 | 12.94
40-20 | 9.70 80-10 | 9.20 10-80 | 16.56 40-80 | 13.09
40-10 | 9.91 40-40 | 9.28 40-40 | 18.02 10-80 | 13.59
40-80 | 10.21 40-10 | 9.53 20-80 | 18.06 40-40 | 14.78
20-20 | 10.45 20-10 | 9.73 10-10 | 18.10 10-40 | 14.82
20-10 | 11.56 20-80 | 10.38 80-20 | 18.45 40-20 | 15.47
20-80 | 11.75 20-40 | 10.47 80-10 | 18.47 80-40 | 15.74
20-40 | 11.83 20-20 | 10.51 10-40 | 18.55 40-10 | 15.88
10-20 | 15.15 10-20 | 11.69 20-20 | 18.80 10-20 | 16.98
10-10 | 15.83 10-80 | 12.50 80-80 | 18.88 80-20 | 17.81
10-40 | 15.99 10-40 | 12.56 10-20 | 20.31 80-10 | 21.75
10-80 | 16.86 10-10 | 13.46 80-40 | 20.98 80-80 | 23.00

Table 2: Prediction performance on training Table 3: Prediction performance on test data
data for tear and tensile for different sizes for tear and tensile. The best test result us-
of explanatory and response layer, sorted by ing BP we obtained earlier was 11.7% for tear
performance. A size “80-10” means 80 input  (two hidden layers with 10 units in each) and
RBFs and 10 output RBFs. 10.8% for tensile (same configuration).



64 SUPPLEMENT III: MODELLING WITH PROBABILITIES

7 Discussion

Advantages of using the mixture density model, compared with e.g. using MLP with BP are
the following: 1) The RBF representations of variable spaces are built un-supervised, which
is why expensive labeled examples are not needed at that moment. 2) The generalization
can be dynamically improved due to the regularization capabilities of the RBFs, which
decreases the requirement of cross validation. 3) The design (selection of architecture) of
the network is rather easy and need not be done in a supervised way as the number of
RBF units relates to the density and representation of the variable in each space. 4) The
supervised training part can be done as a one shot quick process as this is just to collect
statistics. 5) The predicted mixture density for response variables gives, besides the ability
to estimate a confidence interval, also the ability to detect ambiguous output values, which
will show up as a multi modal density function. 6) A missing value in an input sample
vector is still usable as this only leads to a less specific conditioned a priori density in the
missing dimension.
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Abstract

A method for sequential pattern recognition and prediction in Bayesian
networks is investigated. The basic approach in this method is to add
stimulus delay lines to an associative network, thus converting temporal
structure to a spatial one. Some methods to avoid very large connection
matrices are studied. Results show that it is possible to efficiently store
sequences in a network where the connection matrix is strongly reduced.

1 Background

The goal of the present work was to develop a useful model for temporal pattern recognition
and generation using a neural network based on Bayesian learning. The temporal network
model will further serve as a part of an ANS (Artificial Neural System). It provides a way
to do simulation studies of problems that need to be treated in a temporal manner.

Considering certain aspects of information processing performed by biological neuronal
networks such as recognition and motor control, it is quite reasonable to assume that the
treatment of temporal patterns is a fundamental property of the nervous system. In the
case of auditory recognition the cochlea performs something quite similar to an electro-
mechanical discrete Fourier transform of the sound input. The mechanical pressure vari-
ations are converted to a time varying pattern of intensities for the decoded frequencies.
Certain sounds are only discriminable due to their temporal properties. For instance, when
a recorded piano is played backwards it will certainly not be recognized as a piano. The
same effect is seen on higher level audio perception, such as listening to melodies or speech
understanding. As another example we could consider motoric efference. When generating
motor actions such as speech and locomotion, both a precise timing and precise patterns of
muscle activation sequences are essential for an accurate result. Yet most of the research in
the field of artificial neural networks has dealt with static pattern recognition and classifica-
tion problems. Of course it is fundamental to the science of neural networks to have a good
knowledge and understanding of how to design static classifiers and associative memories.
On the other hand, for studies of higher level behavioral aspects of biological systems and
for application of neural network solutions to real world problems, it is important to have
network models that processes temporal patterns with reasonable performance.
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2 Definition of the temporal problem

Is there such a thing as an ideal temporal associative memory? If so, then how could
that be defined? A temporal memory could be imagined to remember spatio-temporal
patterns. Experience from static associative networks tells us, however, that patterns stored
in a network should not be dependent on intermediate values for single neurons. Such a
network will be too sensitive to disturbances as noise and faulty neurons. If we want
continuous values we use groups of neurons instead. A reasonable limit then would be to
treat only sequences of patterns, whose prototypes are binary, and to use graded output
from units as belief propagation. In any case, graded values and spatio-temporal patterns
can be approximately achieved by different coding techniques such as interval coding and
population coding.

One approach to define a sequential memory could be to extend a definition of a static
memory. Consider the following definition of an ideal static autoassociative memory for
binary patterns (Kohonen 1988):

(i) An ideal autoassociative memory is a system which holds copies of distinct input signal

sets £P) p =1,2,...,k in its internal state, and produces the copy of a particular set
z(r) = (é"),gg’"), € e 1,2,. ..k to the outputs, whenever (in the recall mode)
the inputs are excited by a set of signals x = (&1, &2, ..., &) in which a specified subset

of the values & matches with the corresponding subset of 51@'

This could serve as the basis for a definition of an "ideal” sequential memory. The following
definition has been the basis for the present work:

(il) An ideal sequential associative memory holds copies of sequences of instantaneous

patterns, defined as in (i),

%) p=1,2, .. ks=s50,51,..;5n
in its internal state, where s is an implicit state number, and produces a copy

X(r,s) — w(rO,sO)) . .,L.(rz',sz'), . w(rj,sj)) . .,L.(rm,sm)
of a particular stored sequence of instantaneous patterns, whenever, in recall mode,
the network is stimulated with a sequence of instantaneous patterns

Y (ws) = y(UO’SO)...y(""’s")...y(ujysj)
where, in a specified subset of the sequence Y(, ;) each member y(.; s matches a
specified subset of each member (,; 5 according to (i), in the sequence X (5. An
ideal temporal associative memory could then be defined based on (i) where the relative
time between different instantaneous patterns and the absolute recall speed is also
considered.

(iii) An ideal temporal associative memory holds copies of sequences of instantaneous pat-
terns, where each instantaneous pattern is a set of signals,
2Pt p=1,2 .. kt=to,tr,.. tn
in its internal state, where t is an implicit time stamp, and produces a copy
X(nm) = glrosmo) | qprioms) | p(riomi) | gp(rmTm)
of a particular stored temporal sequence of instantaneous patterns
X(T’t) — SL-(T'OytO), ey x(Tiyti), ey .'L'(Tj 7tj)’ ey :L.(Tm,tm)
whenever, in recall mode, the network is stimulated with a temporal sequence of in-

stantaneous patterns
Y(uvt) = y(uo 77—0) y(ul vTi) y(uJ vTj)
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where, in a specified subset of the sequence Y (%Y each member y(“s*) matches a
specified subset of each member z(":t) | according to (i), in the sequence Xt in
monotonic order, and

to—t; =T - (T() —Ti),to —tj =T- (7’0 —Tj),...;T € R.

In most circumstances, however, we are not interested in reversed recalls. Thus we may
limit the produced sequence of sets to those where T > 0, i.e. a sequence would only be
recalled in the same order as it was stored. As a further restriction, in the current study we
have focused on sequential memories according to definition (ii). Thus it is only the order
of instantaneous patterns in a sequence that is essential. In the following examples some
sequences; S1, S2 and S3; are given. Each instantaneous pattern in these is a character, or,
as in examples e2 and e3 a pair of characters. Assuming that we have an ideal associative
memory available, a sequential memory may then be implemented under one of two trivial
constraints. Constraint 1, each instantaneous pattern is unique. Two sequences, S1 and
S2, are stored in the associative memory, such as:

(el) S1
S2

142857142857 . ..
093093...

Here any of the sequences S1 or S2, both infinitely long, may be uniquely produced if a
stimulus pattern y(u,t) matches any element of the pattern sets 1,2,4,5,7,8 or 0,3,9. Con-
straint 2, we have the possibility to store time or equivalent contextual information together
with each instantaneous pattern x(p,t),(Rosenblatt 1962):

(es) 81 = (a,0),(b,1),(a,2),(c,3),(a,4),(d,5)
S2 = (e,0),(c,1),(e,2),(b,3),(e,4),(b,5)

Each instantaneous pattern, in this case, is made unique by giving it an explicit time tag,
but any pattern may occur just once in a specific context or at a specific time. If the
sequences S1 and S2 in (e2) above are learned and a third sequence, S3, such as:

(e3) S3 = (¢,0),(d,1),(a,2),(d,3),(c,4),(a,5)

is added, the sequences S1 and S3 could not be unambiguously recalled because the in-
stantaneous pattern (a,2) is no longer unique among the sequences S1, S2 and S3 because
it occurs both in S1 and S3. Another drawback of making each instantaneous pattern
unique is that it becomes hard for the network to make generalizations. Let, for example,
a temporal network learn the following sequences S1 and S2:

(ed) S1
S2

ababcde
bcabcab

When storing such sequences as S1 and S2, in which an instantaneous pattern ”a” is always

followed by a ”b”, it is possible to generalize about this. A constraint that makes each
instantaneous pattern to be unique, i.e. where a network may only use pattern information
from the previous timestep, will be hard to fulfill. The basic problem in temporal networks
is how to deal with the history. A prediction must normally use data older than t minus 1.
The property of a set of sequences telling how old the data must be for one to deal with it,
in order to specify each continuation uniquely, is here called context length.
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Definition:

The context length of a sequence is the maximum age of the data required to specify
each continuation uniquely.

For example: The sequence ”142857142857...” (fraction part of 1/7) has context length 1 but
the word ”mathematics” has context length 4. Now, consider the differences between the
properties needed for sequential pattern classifiers and sequential pattern generators. For
classification purposes, e.g. phoneme recognition, the problem consists mainly of detection
of specific features in the input stream, features that are often invariant to some properties
of the input signal. One property to pay attention to in recognition circumstances is whether
automatic segmentation of the input stream has to be managed. Such as:

"CANYOUREADTHIS" vs "CAN YOU READ THIS"
"SEGMENTSMAYBEAPROBLEM" vs "SEGMENTS MAY BE A PROBLEM"

This is a well known problem in, for example, recognition of continuous speech. There are
certain languages, like Finnish, where it may be less accentuated due to consequent stress
of the first syllable of each word. The stress of a word is, however, not yet a property to be
treated in an efficient manner in automatic speech recognition. (Elenius K., personal com-
munication). For pattern generation purposes we may pay attention to how the sequence is
activated and how tolerant the generated sequence has to be against errors in the triggering
stimulus. For low level pattern generators in biological motor systems, it has been shown
(Grillner et al 1987) that basic spinal pattern generators may be driven by a tonic stimulus.
This has also been shown in simulated models of spinal pattern generators (Lansner et al
1989). Figure 1 shows a model of the Lamprey swim generator that has been simulated.

Figure 1: The spinal swimming rhythm generating network of a Lamprey. "E” are excitatory
interneurons that drive the motorneurons. "CC” are interneurons that inhibit the opposite
side. ”L” are lateral interneurons that terminate activity on the active side. ”MN” are
motorneurons and "RS” are reticulospinal neurons. The reticulospinal neurons are driving
the spinal network. Filled circles designate inhibitory synapses and unfilled circles excitatory
synapses.



72 SUPPLEMENT 1V: TEMPORAL ASSOCIATION

For temporal motor control mechanisms we do not yet know what kind of activating
patterns are used. It is however reasonable to believe that the activating pattern sequences
are quite short. In fact, the start condition could be just a single pattern, like a goal
coordinate in a reaching movement. At a certain level in the system this may reflect how
the movement is initialized. In the following we focus on the problem of generating long
sequences from short activating sequences.

3 Different methods for temporal sequential networks

We introduce by giving a short review of some previously studied methods for sequential
pattern recognition and completion. This is in no way a complete review. It is an illustration
of some methods which differ from the approach in the present work. A state machine built
round an associative memory is studied by Kohonen. Outputs from the associative memory
are fed back through delay lines to the network. Delayed replicas of the outputs will be
associated with incoming stimuli (Kohonen 1988). Methods and theories from adaptive
signal processing that are used for prediction of stochastic processes are also applicable
to neural network models. The weights may be calculated using the least-mean-square
(LMS) algorithm or, e.g., Kalman-filter algorithms (Trvn 1988). In another model, that is
called short term memory (STM), each unit remembers a small history of its input signal
by letting the signal pass a convolute giving an exponential decay (Trvn 1988). Each
signal passes a STM-loop. There are several STM-loops in parallel and the outputs from
each STM-loop are weighted into a decision network that selects output patterns that are
most close to the valid patterns. The Hidden Markov Model is a kind of state machine
where the weights are interpreted as transition probabilities. A HMM may be trained
using the forward-backward algorithm (Waibel et al 1987). A Jordan network is a way
of implementing sequential association in back propagation networks by adding feedback
and a set of recurrent state units. (Jordan 1986), (Massone, Bizzi 1989). Another way
to use back-propagation for temporal processing is to use ” Time Delayed Neural Networks
(TDNN’s)”. TDNN is often used to designate multilayer backpropagation networks where
each unit has multiple weights with different delays. These units may however be used with
other learning rules (Waibel et al 1987), (Lang, Hinton 1988). The sequential or temporal
networks mentioned above may be used either for pattern recognition or pattern generation.
Most of them have in common that they may be seen as implementing a type of predictor

p(t) = F(s(t),p(t —1),...,p(t — k)) 1)

where the estimated pattern at time t is solely a function of the stimulus at time t and
k steps of predicted pattern history. This is, of course, not true for models where units
with different input delays, as the TDNN units, are used to sample the stimuli. The other
extreme in that case is

p(t—c) =F(s(t),s(t—1),...,s(t—k)) (2)

where the estimated pattern at time t-c is solely a function of the input stimuli.The constant
¢ is normally chosen between 0 and k. For classification purposes the estimated pattern
may be a decision, like hyphenate vs not hyphenate. A variant of the latter is

Pt —1,... 6 — k) = F(s(t),s(t — 1), ...,s(t — k) (3)
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where a sequence may be recognized as a whole. A network model for recognition of tempo-
ral patterns that corresponds rather well to this predictor principle has been studied (Tank,
Hopfield 1986). Stimuli are projected on a network through continuous delay functions that
also make a compression of information in time .

4 Methods and simulation results

In this section we present the models developed and some simulation results.

1 Networks with delayed inputs

The basic method for implementation of sequential memories studied in this work is the ad-
dition of delayed stimulus connections to an autoassociative network, i.e. temporal structure
is transformed to a spatial one (figure 2). With this architecture we will get the predictor

plt,t—1,...,t—k)=F(st),s(t —1),...,s(t = k),p(t),p(t — 1),...,p(t — k))  (4)

where the sequence within the whole context length k is predicted from both k steps of
predicted pattern history and from k+1 steps of stimulus. Assumptions: the rate of stimulus
change is slow compared with the relaxation time of the network. The delay lines has equal
delay characteristics.

t-1 t
< D <

Output Stimulus

A

< D

Figure 2: Picture illustrating the principle for temporal to spatial conversion. The left
figure shows a fully connected associative network, here represented by 4 neuronal units.
A part of the network will see a delayed replica of the input signal (t-1). Outputs from
some of the units will be mixed with the input signal. The right figure shows the same
in a more formalized way. A network population is represented here by a rectangular
box. An oval with an arrow shows that the population is recurrent. An arc binding
two network populations together means that all units in one population are projected
on all units in the other population in the direction of the arrows.
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The associative network model chosen is of Bayesian type (Lansner,Ekeberg 1989). There
are several reasons for choosing a Bayesian network. The learning rule is fairly simple
and biologically reasonable. The Bayesian criterion is also considered to be the best in
comparison with other common classifiers as Perceptron (Linear), Least Mean Square and
Sigmoid (Barnard, Casasent 1989). The learning problem in these types of Bayesian net-
works is mainly a question of collecting statistics. The weights are computed from mutually
conditional probabilities (assuming independent patterns), such that:

(5)

The method used in this work for collecting relevant statistics is an incremental learning
rule (Ekeberg ., personal communication). The probabilities are estimated without prior
knowledge of the patterns by using exponential convolutes and thus will be good estimates
for both stationary and non-stationary processes. In the notation used here Sj(n) is sample
value for unit j when the n’th pattern is presented. Pij(n) is the compound probability that
unit i and j are simultaneously active. t is a time constant that is chosen large enough to
smooth out short term variations but short enough to follow non stationary processes.

(n) _ p(n) (n) . g(m) _ p(m)
13].("+1>:13](">+7Sf — 1 pig."ﬂ):pigﬁus" ) (6)
T

T

A problem with these fast and simple learning rules in one layer nets is that probabilities
are assumed to be pairwise independent. This means that certain patterns are not distin-
guishable. It is possible to deal with dependent patterns by using multilevel nets. E.g. a
one level Bayesian network could be enhanced by complex nodes (Lansner, Ekeberg 1987),
i.e. ”interneurons”, working as feature detectors, that are using a different and more com-
plicated learning rule. In this work there has been no attention paid to this possibility.
Here, only one layer nets with incremental Bayesian learning are considered. We assume
that the problem of independence has been solved before the input is given to the Temporal
Associative Network (TAN). In a network where just one delay step is used,as shown in
figure 2, it is possible to store sequences with a context length of one. To recall sequences
in this network, output from the part of the network that is stimulated without delay is
fed back and mixed with the delayed stimulus. To manage longer context lengths the most
obvious thing would be to add more stimulus delay lines thus spreading the temporal infor-
mation over a larger network, figure 3. The outputs from the subnets is coupled to the delay
lines and from there propagated. This is refered to here as output feedback. The degree of
output feedback is not critical but some tests showed rather good results when the outputs
and the inputs influenced the propagated data with one half each. If the output feedback
is too large the network will have hard to change a faulty decision. In the corresponding
way the network will be sensitive to noise when the influence of the inputs is too high.



4. METHODS AND SIMULATION RESULTS 75

Figure 3: A network with 5 delay steps that
could manage context lengths of 5. The stim-
uli is propagated in the direction of the ver-
tical arrows. After the network has reached
a state of relaxation it produces an output
from each neuronal population (the rectan-
gles). Outputs from the neuronal populations
are fed back to the stimulus propagation line
as the arrows going from top of a rectangle
and leftwards show. These connections are
here called output feedback .

The storage capacity (Zmax) in an associative network relates to the number of units
(N), where ”In” is the natural logarithm, as (Lansner, Ekeberg 1985):

Zmas = 0 ((0)") g

When storing sequences of patterns in a network, configured as in figure 2, that could man-
age a context length of one, it would be expected that the maximum number of sequences
of length 71”7 possible to store would be

(miwy)’
SeQmaw =0 l—il (8)

The assumption behind this is that each instantaneous pattern in the sequence is coded as
a single unit. If this is the case, the first and last step of each sequence will not generate
any weight change, i.e. each pattern in a sequence is associated with its follower, except, of
course, for the last one. When we add more delay lines to manage contexts of length ”¢”,
as in figure 2, we would, with the same assumption as in the previous example, expect the
maximum capacity to be decreased to

Sequs = 0 (D" o)
fmor ="\ T+ c—2

When we need to treat long context lengths, with this model, very large amounts of weights
are required. The number of weights will increase with the square of the context length ”¢”
,where "n” is number of units in a single pattern:

Wiot = ((c+1)-n®) — (c+1)-n) (10)



76 SUPPLEMENT 1V: TEMPORAL ASSOCIATION

5 Matrix reduction due to time invariant relations

When looking at the connection matrix (figure 4) one could expect some symmetries to be
found due to dependencies between patterns at different timesteps. A matrix element like
[t-3,t-2] that connects output from timestep (t-3) with inputs at (t-2) should be the same
as the element [t-4,t-3] etc.

t-5

t-4

t-3

t-2

t-1
t

output:

T 112 -3 14 1.5 Ihputs

Figure 4: The connection matrix that connects different timesteps with each other. Observe
that the elements of this matrix are also matrices which make the network at each timestep
recurrent. The interpretation is that the outputs from timestep t-3 connects to inputs at
timestep t-2 and so on.

If the symmetry principle is correct then we would get a matrix like the one in figure 5.
The connection matrix will have a diagonal structure where each element, representing the
set of weights projecting one population on another, is constant along a diagonal. Due to
this symmetric structure the number of unique weights is reduced to increase linearly with
the context length instead of growing with the square.

output:

t &1 t2t-3 04 t-5 INputs

Figure 5: Due to invariance between dependencies at different timesteps the matrix will show
a diagonal structure.

By utilizing the diagonal structure of the connection matrix it would be possible, in a
simulated network model, to use a smart lookup of weight values. If this is possible to realize
in a simulated model it is still, however, not very attractive because it is still computationally
expensive and totally unplausible from a biological point of view. It would also be rather
unpractical to implement this model in hardware. Perhaps it could be a creative approach
to reason in the following way. The multiple sets of equal weights along the diagonals are
redundant in the sense that, once a set of weights has been used in the relaxation it is
possible to ignore that set at further timesteps. As a consequence, we could then try to
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simply remove the redundant part of the matrix as shown by figure 6. This operation would
also make the number of weights linearly proportional to the context length, such that:

W/,=m>=n)-(2-c+1) (11)

t-5

t-4

t-3

t-2

t-1
t

output:

T 16263 t-4 -5 INputs

Figure 6: Assuming that the multiple occurrences of equal weight sets over the diagonals are
redundant, we could simply remove them (grey). Thus the total matrix will be L-shaped and
the amount of weights will grow linearly with the context length.

A network with connectivity reduced according to the hypothesis that multiple sets of time
invariant weights are redundant is shown in figure 7.

Figure 7: A TAN (Temporal Associative Network) with 5 delay steps and “redundant” con-
nectivity removed.

To characterize the performance of the present model and to investigate the effect of re-
moving the "redundant” part of the matrix some tests have been performed. figure 8 shows
some results from tests that have been run using random sequences of characters as in-
put. Each character has been coded as a unique active unit. By coding each character
uniquely we are sure that the characters themselves are pairwise independent. Tests where
distributed character coding is used have also been performed with reasonable results on
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the larger nets but they are not shown here. The same set of training and test data has
been used for all the following tests.

Full Connection Matrix Reduced Connection Matrix
100 - 100 A
80 A 80 -
8 60 - 8 60 -
o) o)
> . =) .
g 40 - O  6X7 units g 40 - T+ 6Xx7 units
o ¢ 6x14 units g . ~®  6x14 units
= &+ 6x21 units = 4+ 6x21 units
3 20 - < 6x42units O 20 - <~ 6x42 units
S 8
(0 ™ L e e m e s p—— OoTrt—T"T—T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
# Sequences, L=12 # Sequences, L=12

Figure 8: Comparison of behavior between a TAN with full connection matrix (left) and a
TAN with reduced connection matrix (right). The same random character sequences has been
used in both the tests. The vertical axis shows the percentage of sequences that has been 100
been stimulated with the first three steps of the sequences learned.

When completion tests are run on the network with full and reduced connection matrix
we see, as figure 8 shows, that the nets behave almost equivalently. As a matter of fact,
the nets with reduced matrices perform slightly better except for the small network with
42 units. The results above indicate that the principle for temporal to spatial conversion,
that is used here, could be a useful method for implementation of sequential associative
memories.

6 Left-Right context

One reason for using a network that is recurrent in the time domain, as we did in the
previous section, is that this makes it possible to do pattern completions within the whole
manageable context length for the net, i.e. we not only may predict the future from old
data, but also tell what the past should have been, based on recent data. Earlier we defined
the context length for a sequence as the maximum number of timesteps required to specify
each continuation uniquely. The context in his definition could be designated ”left-context”.
In the same way, "right-context” could be defined as the number of steps required to specify
a unique history. It is, of course, totally irrelevant to speak about left and right in the time
domain but, if we associate time with, for instance, sequential reading of text, which in
most languages is performed from left to right, we get a useful interpretation. A more
general expression would be preand postcontext. Seen from a statistical point of view pre-
and post-context may be compared with pre- and post-dictors that are used to determine
the correct value of a signal based upon passed history and future (Parsons 1987). Pre-
and post-contexts have the same size for any sequence but this does not imply that this
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amount of timesteps is necessary for determination of the sequence uniquely. The context
length defines the minimal number of delay steps we need to generate the sequence. There
may be many parts of a sequence shorter than the context length that uniquely specifies it.
Assume that a network similar to the one in figure 7, but with 10 delay steps, has learnt
the following sequences whose context length is 4 :

S1 = MATHEMATICS
S2 = MATERIALLY
S3 = MATRICULATE

If the network is stimulated with e.g. ”MAT” it will not be able to unambiguously choose a
continuation. The network will choose one of the sequences anyway. Consider the following

stimulus-recall process (”.” means empty input) :

Stim = MAT. Recall = MATH
Stim = MAT.. Recall = MATHE
Stim = MAT... Recall = MATHEM
Stim = MAT...L Recall = MATERIAL
Stim = MAT...L. Recall = MATERIALL
Stim = MAT...L.T Recall = MATRICULAT
Stim = MAT...L.T. Recall = MATRICULATE
By stimulating the same network with "........ ICS" it will recall "MATHEMATICS", i.e.,

by utilizing the right-context (or post-context), a temporal network will be able to recall a
whole history or ” cause” when it is stimulated with a part of a sequence or change its decision
when additional input is available. For a sequence generating network this is a valuable
property to prevent noise in input to give errors in output. Experiments like these has been
performed on human beings for the English language (Shannon 1951). It was found that
the predictor and the postdictor have the same characteristics but the predictor is slightly
better. It means that it is somewhat easier to guess a word when given the beginning of
it than given the end. Actually, a network with temporal recurrency, like the one here
described, could equally well be used to recall a sequence backwards if the delay lines were
reversible. Biological evidence for reversible temporal networks are currently unknown, but
for certain problem domains this could be a useful property. Take for instance a labyrinth
learning network that has learnt a sequence of turns to find its way across the labyrinth.
By reversing the direction of recall and reversing the direction of turn the network would
find the reverse way across.

7 Feedforward classification of old data

To predict time sequences is somewhat like walking in a rather well-known landscape. Often
we may know where we are and where to go by just looking in the closest environment. But,
sometimes the closest environment is not enough and we have to look around for distant
landmarks. When we look in the close environment we sometimes take a faulty decision,
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but soon we may recognize a distant environmental feature that makes us change our mind
and choose a new direction. This is easy, but if we have misinterpreted a distant landmark
we may go several kilometers in the wrong direction. In a sequential associative network
it could, referring to the analogy above, be reasonable to assume that we may use the
feedforward principle for old data, i.e. ”distant landmarks” and the recurrent principle for
recent data, i.e. ”close environment”. The network will then be robust in the recurrent
part where data are highly correlated and an error in stimuli may cause great errors in
the decided output. When the stimuli outputs mix is propagated to the feedforward part
of the network the output decided is no longer possible to change. To investigate if the
feedforward principle is feasible with the Bayesian learning rule for predictions of sequences
some tests has been done on feedforward connected networks (figure 9, Left).

As can be seen from tests on a feedforward network (figure 9, Right) the capacity is
about half of the capacity for a recurrent network (figure 8), with the same set of data.
This is expected since there is half the number of connections and the stimulus is not noisy.
A network of this type has to make correct decisions at each timestep, otherwise the faulty
patterns will be propagated and be the basis for new decisions. An attempt to decrease
the number of weights without loosing too much capacity or the left-right context principle
is to use recurrency for recent data and feedforward connectivity for old data as figure 10
shows. The capacity is slightly less than for the fully recurrent net. The reason for the
capacity to be that high here may be explained when one considers how autocorrelation
functions usually behave as a function of time difference. Since most sequences probably
have a rather short context length, the feedforward weights are only needed to resolve just
a few ambiguities.

Feedforward Network
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Figure 9: (Left). A temporal network with feedforward temporal connections. (Right). Re-
sults from completion tests on a feedforward temporal network.
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Recurrent+Feedforward
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Figure 10: (Left):A temporal network where recent timesteps are recurrent and older timesteps
are feedforward only. (Right): A few results obtained with the combined network. These
results are only slightly worse than for the fully recurrent network.

8 Coarse summation of old data

If we consider the consequences of being able to manage very long sequences in temporal
neural networks we will probably come to the conclusion that it is rather unrealistic to have
a temporal resolution that is linear with time. We would get very large connection matrices
even when using the symmetry and feedforward principles investigated above. Many of the
weights would be unused due to small correlations between data with large time differences.
As an example we can look at the following expression ”the correlation is low”. If we consider
the temporal connections between "the” and "low” it should be quite clear that the exact
time when ”the” occurred compared with ”low” is less important compared with ”t” and
”e” in "the”. When looking at perception in biological systems we know that the threshold
for a difference in sensation relates to the change in stimulus as (Weber’s law) (Kandel
1985): k=DS/S, i.e. the threshold for experience of a change in stimulus is proportional to
the size of the stimulus. In this way our sensations are proportional to the logarithm of the
magnitude of the absolute stimulus. A hypothesis about temporal resolution could then be
stated in the same way

AT
AResolution = k - Ea (12)

which would give a resolution that is a logarithmic function of time distance. One way of
implementing a logarithmic-like resolution in a network like the one we havedescribed here,
would be to sum the history over a number of time steps that grows exponentially with the
”subjective” time distance. Figure 11 shows some examples of this summation of history
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that we will now refer to as coarse summation.

L1l 1] 2]2]2][3]4]4] 12t
[f12]2[3[5]8[m[17[26] 15
(T2 4] 8[16]32]e4]128[56] 20"
) "subjectivet”

0 1 2 3 4 5 6 7 8

Figure 11: The principle for coarse summation of propagated stimuli/outputs to obtain a
logarithmic-like time resolution. The number of sum steps is an exponential function of the
”subjective” time, here with bases 1.2, 1.5 and 2.0.

In an implementation of a temporal network that uses coarse summation it is necessary to
choose the base for the exponential function in accordance with the statistical properties
of the data. To see if the hypothesis about logarithmic resolution could be reasonable
anyway, some tests were run on a network configured as in figure 12, with 2 as a base for
the exponential summation.

Full Matrix+Coarse Sum
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Figure 12: (Left) A temporal network that achieves a logarithmic-like resolution versus age
of data. The varying resolution is achieved by coarse summation of old data. The coarse
summed data is feed forward weighted into a fully recurrent network that spans over a few
timesteps. (Right) Results from some tests with random sequences on some nets with coarse
summation.
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Capacity degradation for different coarse summations
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Figure 13: This diagram shows how the capacity degrades when different type of coarse
summation is used. The capacity for perfect recall is, in this test, the same for all, but they
show different degradation when this maximum capacity is exceeded. (a): Unit on if any input
is on, i.e. like a logical OR-function. (b): Average, i.e. the sum has been divided with the
number of coarse summed units. (c): A unit is on if most of the units are on, i.e. an average
with a threshold. (d): The summation unit’s output value is just the sum of its inputs.
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Figure 14: (Left) A temporal network with logarithmic-like time resolution where the coarse
summed stimuli is only feedforward weighted into the recurrent part of a network with reduced
connectivity. (Right) Results from tests with coarse summation and reduced connectivity.

A question that arises is how the stimuli has to be summed to give the best performance. If
we assume that the coarse summed network works according to the same principles as the
feedforward network described above, then the best summation principle would probably
be one were the new weight values match the values in the feedforward network as much as
possible. To achieve this, the output from a coarse summation unit could be just a simple



84 SUPPLEMENT 1V: TEMPORAL ASSOCIATION

sum of its inputs. A strange thing with this method is that the outputs of the summation
units would exceed one. The output from a unit in the Bayesian network model that is
used here reflects the probability for this unit to be active. We may however, see these
summation units as help units that makes us collects statistics for several units at the same
time. Results from a test run with some different types of coarse summation is shown in
figure 13. This test indicates that the best type of summation to use is either a simple
OR-function or a simple sum.

Completion tests on networks with coarse summation of old data showed quite good
results when the sums where coupled to a fully connected network, figure 12 (Right). Cor-
responding tests on network where the recurrent part had a reduced matrix show, as can
be seen in figure 14, even a slightly better result.

9 Sequence capacity for different architectures

The goal with this work was to find a useful model for temporal association in Bayesian
networks to be used in simulation studies of temporal phenomena. Thus it is important to
consider the model characteristics such as, capacity versus the number of units and number
of weights.

To make possible such a comparison all tests have been run with the same random
training and test sequences of characters with unique unit coding of characters. Each
sequence in the test had the length 12. The number of neuronal populations were 6, i.e. the
manageable context length would be 5, except for the coarse summed network that could
possibly manage a context length of 9.

As the basic principle for temporal association investigated here is to use delayed inputs
for conversion of temporal information to spatial, there may be different performances
expected depending on how the spatial matrix is connected due to, for instance, time
invariance effects.

The number of units in these models have been kept the same. A ”unit” here designates
everything which has its outputs connected to other units via weights. Some of these units
are, for the feed forward nets, just used as input units, or for the coarse summed networks
as stimulus summation units.To vary the number of units in a network model, the width of
each pattern and the repertoire of the random sequences were varied.

Figure 15 shows the capacity plotted as number of sequences versus number of units for
the different models investigated in this work. It should be observed that the theoretical
capacity is based on experiences from static content addressable memories (CAM). It may
be a surprise that the theoretical capacity is lower than most of the capacities measured.
There is, however, nothing strange in this. What really matters is that we have the same
proportionality. The theoretical capacity is based on empirical results for independent
patterns with a sparse activity rate of about 1temporal examples we have both dependencies
between the patterns and a varying rate of activity.
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Figure 15: Capacity versus number of units for some temporal network models with different
connectivity principles. (a): Fully connected recurrent network. (b): Recurrent network with
reduced connectivity due to symmetry. (c): Network with feedforward temporal information
only. (d): Mixed recurrent , fully connected with coarse feedforward summation (e): Mixed
recurrent, reduced connectivity, with coarse feedforward summation (f): Theoretical capacity.
based on static CAM results.

10 Sequence capacity versus number of weights

In the previous plot in figure 15 we looked at capacity versus number of units in each of the
tested network models, but, what really makes the cost, at least, in artificial neural networks,
is the number of weights. To check which model uses its weights in the most efficient manner
the same data as above is used, but instead the number of recalled information bits versus
the number of weights for the different models is investigated. The information content of
a recalled sequence is designated as the ratio between the number of possible full length
sequences and the number of possible sequences that are used as input for recall. The
number of information bits in a recalled sequence is just the two-logarithm of this ratio.
We get the total number of information bits (I) as the difference between the two-logarithms
for the number of possible sequences and the number of possible input sequences (R) times
the number of stored sequences (8S).

I'=8-(log, (Spossible) —log, (Rpossible)) (13)

This is based upon corresponding calculations for static CAM capacity (Lansner, Ekeberg
1985). Figure 16 shows how the recall capacity per weight differs for the different archi-
tectures. As these test indicate the weights are much better utilized when connectivity is
reduced than with fully connected networks. The criterion for correct completion in this
figure is that at least 95 tests above show a dip in the capacity to e.g. 90 100 figure 16 were
plotted, the first dip in capacity was construed as the capacity limit.
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Information recall for different architectures
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Figure 16: Capacity as recalled information per weights for some temporal network models
with different connectivity principles. (a): Fully connected recurrent network. (b): Recur-
rent network with reduced connectivity due to symmetry. (c): Network with feedforward
temporal information only. (d): Mixed recurrent, fully connected with coarse feedforward
summation (e): Mixed recurrent, reduced connectivity, with coarse feedforward summation.
(f): Feedforward only, as in (c), but with 10 delay steps.

11 Discussion

We may ask: Is there any special reason to choose a temporal model that spreads the
temporal information across a spatial network? Yes, this method not only gives the system
the possibility to draw conclusions out of the input data from the history but also to ” change
its mind” when new inputs show that an earlier decision was wrong. Thus, the network
will be robust against noise in the input and generate correct sequences also when faulty
decisions sometimes are taken. Using the feedforward principle for old data means that the
network will be unable to do this.

There are some aspects of temporal association that have not been dealt with in the
present work: speed of recall, recall in reverse order, time independent sequential, logical
reasoning and semi-sequential processing that may run independently in parallel except for
certain rendezvous. It has also been assumed that the sequences do not overlap to much
for a one-layer network.

Speed of recall and recall in reverse order are both represented by the constant T given
in the paragraph ” Definition of the temporal problem” above. When T is less than one, the
recall speed is greater than the learning speed and when T is greater than one, the recall
speed is lower. Further, when T is negative the order of recall is reversed. Considering
the varying speed of recall, it seems to have relevance in biological systems. When we
have learned for example a sequence of movements, the speed may be varied within certain
limits. A reversed order of recall may not be equally relevant in biological systems. It is
common that people have problems when trying to do certain tasks in reverse order. Try
for instance to rattle off the alphabet backwards!

When looking at motor systems it is rather unrealistic to imagine that the performance
of an action could be reversed by just reversing the order of muscle stimulation. To reverse
a movement a completely different strategy has to be taken with different muscles involved
etc. This does not imply that this should be the fact in all levels of the system. It is possible
that an action stored at a high level in the system, where just model coordinates about the
outer world is treated, may be recalled in a reversed order.
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The actual movements are then planned from these coordinates and different learned
strategies would then be used in different directions. When one consider coarse summation
as a method to manage long context lengths there are a few questions that may arise. (a)
Is this a relevant method? (b) Is this in some sense biologically relevant?

(a) Further tests of this method on sequences with long contexts has to be done in com-
bination with a more thorough statistical analysis. If looking at implementation of
such a method it may also seem impractical to propagate and sum stimuli/outputs
in the way we do here. Some function that approximates this behavior is probably to
be preferred.

(b) There is currently no indication that coarse summation, as it is described here, may
take place in biological systems. If such a mechanism exists it is more probable that
it is based upon, for instance, concentration changes etc. in biochemical reaction sys-
tems.

All the tests in this work have been run on random sequences of characters. Further
investigations have to be done on structured sequences of data, i.e. sequences where it
is possible to define a grammar; as well as on sequences with distributed activity in the
instantaneous patterns. Investigations have to be done with noisy start sequences and the
capacity convergence for large networks has to be checked as well.

12 Conclusion

The studies done in this work indicate that efficient sequential associative memories may
be built using one layer Bayesian networks, where temporal information is transformed to
spatial information using stimulus delay lines. The reason for this principle to be affordable
is that, due to time invariant relations between patterns, the weight matrix has a structure
with multiple symmetries where "redundant” connections may be removed. The number
of connections will then grow linearly with the maximum context length managed by the
network. By using recurrency in the time domain, a temporal network will be able to tell the
next continuation of a sequence and at the same time change its previously taken decision
when new contradicting stimuli arrives. The results indicates that the best information
capacity per weight is achieved when reduced connectivity is used. It can be used either
for a network that is fully recurrent in the whole context length or in combination with
feedforward and coarse summation to manage longer context lengths.

As a result of this work a Temporal Associative Network (TAN) software package is
available. The package is written in ANSI-C and is instantiable with the following pa-
rameters: numbers of units in a pattern, number of neuronal populations, number of fully
connected steps, number of steps with reduced connectivity, number of steps with feedfor-
ward connections, number of feedback steps, number of normal input steps and number of
coarse summed stimuli steps.
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A Bayesian Network
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Abstract

A recurrent network which segments an unlabeled externally timed sequence of data is
presented. The proposed method uses a Bayesian learning scheme earlier investigated,
where the relaxation scheme is modified with a few extra parameters, a pairwise correlation
threshold and a pairwise conditional probability threshold. The method studied is able
to find start and end positions of words which are in an unlabeled continuous stream of
characters. The robustness against noise during both learning and recall is studied.

1 INTRODUCTION

The segmentation problem is fundamental in pattern recognition. Given data with a se-
quential/temporal behaviour this shows up as the temporal chunking problem [1] which may
be illustrated by the example:
thisisacontinuousstreamofdatathatispossibletoreadwithoutseparators

Here, we want unfamiliar lists of familiar items (characters) presented sequentially to be
recognized as new items (words). In the first place just the characters are familiar. When
we have seen different lists several times we will also recognize the words as familiar items.
The method presented here detects segmentation points between words. Conceptually this
means that we have grouped a sequence of elementary items into a new, composite item.

2 METHODS

1 Learning and Recall

The learning rule used for the ANN was earlier investigated [2]. The network can be char-
acterized as a recurrent Hopfield type with graded output units. Weights, biases (1) and
the transfer function (4) for the units are derived from Bayes’ rule.

ﬂq = Ing(’i (1)

= 3

wi, = log plilg) _ log p(q&i) 1o 2 o 8¢ =By +};41Uhq7'rh (3)
K p(i) pp(e) ~ " pipg
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The neurons sum their inputs as in (3) where s, is the support of the receiving unit g, wpq
is the weight from unit h, (in the set of active units A) to unit ¢, B, is the bias and
is the output from h. The relaxation process is performed as a statistical inference where
explicit time is simulated by letting a dynamic support E, being charged as a “leaky in-
tegrator” of the support s,. An output value 7, is a hypothesis of p(¢|A) and is obtained
by exponentiating the dynamic support E; as is shown in (4). Here we have calculated the
weight values as in (5).

1 E >0 0 Pi <PvVPg <Py
= —log C¢  pig < pe
g = { es By <E; <0  (4) Wi =4 _log O, p((;m < po (5)
0 Eq <Pq log e otherwise

pip
The threshold p, in (5) acts as a noise limiter and has been set to a low constant value.
The py is a limit for correlations between units. A high py causes uncommon patterns to
be forgotten while p, is more independent of how frequent a certain pattern segment is. Cy
and C, are some large numbers that are characteristic for the network size and the number
of patterns stored. They are not critical but should typically be set so ViVq : (% < p%:) to

make the inhibition a monotonic function of the correlations.

2 Temporal Coding

The architecture used to map sequential information onto the recurrent network is illus-
trated in figure 1. The information is learned at every position. This is like a kind of
translation invariant storage of the sequence.

3 Usage

One possibly way to use the detection of segmentation points (starts and ends) is illustrated
by figure 2. The output from the segmentation algorithm can be used as a “print now”
signal to a network that stores or recognizes each word at a fixed position.

4 Segmentation Principle

Assume that each temporal position, as in figure 1 is represented by a neural population,
where each letter is coded with one unit. Further assume that the segmentation network has
seen a noise free sequence like “NEURALJUNIORNEURALEXPERTNEURAL”. The sequence con-
sists of n words, in this case of equal length I, where the most frequent word occurs at least
¢ times. These words are seen by the network in all positions. The following calculations
depend on how the first and last word are treated. We assume here that a frequent word
starts and stops a sequence. The probability for a unit to be activeis, p* > (I(n — 1) + 1)~!
i.e. , a character has occurred at least once in a unique word and p¢ > ¢(i(n — 1) + 1) " or
¢ times in a frequent word. The pairwise unit correlation p;q, is (I(n — 1) + 1)~" within a
unique word and ¢(I(n — 1) + 1)~ within a frequent word. To detect words that occur more
frequently than their combinations we could use p§ > c¢(l(n — 1) + 1)™". If we also want to
detect infrequent words combined with frequent words we could threshold the normalized
correlation p(i|q), as is expressed by p,. p(i¢|g°) ~ % ~ 1 and p(i¥|q¥) ~ % ~ 1 while

p(i%|q°) ~ % ~ % By setting the p, > % in (5) we could make weights between units in
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frequent, and in infrequent, patterns inhibitory. When all words are about equally frequent
we could set p, just above the greatest pairwise correlation between words. For n equally

frequent words this implies that lim re: _, ps = —5.
PiPq

storage/perception

L E[T[T[E[RIC[HJUN K S

"print now"

segmentation network

Figure 1: A continuous stream of data
passes a tapped delay line that spreads
the temporal information spatially over
the network.

segmentation network

Figure 2: The segmentation network may
signal “print now” to the actual storage or
perception network when a segment start
is found.

5 Segmentation Algorithm

A segmentation hypothesis S, (6), where 7 is an index of the neural population that codes
a character at a specific time-step, is propagated in parallel with the input sequence. St
(8) is a sum of all S;. A decision about segmentation is done based on the current value of
St and a decision threshold £ (9). S, is based upon population activities A, close around
each hypothesis point 7 (6). A, is a normalized sum of the activity in population 7 (7)
where n(7) is the number of units in this neural population.

0 7=0
S = AT A‘r+1 < Arfl _'f (6)
T —A; AT+1 >A, 1+ é’ Segnmentation, no threshol di ng
0 otherwise ‘ 'norml,‘ hits ——
100 | "nornl. hitE -—+— |
"nornil. spurS e
1 n(r) "norml. spur B’ <
A = — . 7 80
T n(T) 1221 Tir ( ) 5
- 60 |
o
: 5 40 t 7
Sr= 3 5 (8)
r=T—1 20 LA
Ce Fa 'D'D’;é‘ﬁﬁﬁﬁﬁ
BEGIN Sr>¢ 0 - o
SEG = END St < —E (9) sequences | ear ned
NO otherwise Figure 3: Random combinations of 17

words are learned and segmented. Upper
curves show correct hits and lower show
spurious hits.
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3 EXAMPLE

Learn the sequences “NEURALJUNIOR”, “NEURALEXPERT”, “BAKERJUNIOR” and “BAKEREXPERT”
on a network with six character populations as in figure 1. Each of the words “NEURAL”,
“JUNIOR”, “EXPERT” and “BAKER” is twice as frequent as any of the combinations. Each
sequence is learned at every position on the network. Biases and weights are calculated
according to (1) and (5) and a relaxation is done for each position when the sequence is
presented. In the following example a “_” means low output activity and a “+” stands for
an ambiguous output hypothesis. To begin with we let the pg have a low value. We start by
stimulating the network as in #1 below. For each time-step the network sees a 6 character
long part of the sequence. After each stimulation in #1 we do a relaxation of the network
and get outputs like in #2. We now do the same but before adjust py to a higher value,
like pg = 0.05. We will then, after each relaxation, get the outputs in #3.

The segmentation algorithm looks at the ac-
tivity difference between adjacent popula-
tions. In example #3 it receives a strong
indication for “R” in “ER_" to be an ending
and “E” in “_EX” to be a start.

ex t0 t1 t2 t3

#1 | BAKERE | AKEREX | KEREXP | EREXPE
#2 | BAKERJ | AKEREX | KEREXP | EREXPE
#3 | BAKER_ | AKER__ _EXP | __EXPE

4 RESULTS

These experiments have been done by forming sequences of words picked from an English
dictionary. Every next word in a sequence has been randomly selected with a certain
probability. In figure 3 it is shown how the algorithm performs on a network tuned for
pattern completion. The network learns an increasing amount of random sequences for a
set of 17 words.

Segmentation performance, versus py-level for noise free data, when just a few sequences
are learned, is illustrated in figure 4. In figure 5 we can see how the p,-level affects the
performance. When varying the p,-level we could not reach the same performance as when
varying the pyp-level. When the py was set to the optimal level the performance could not be
improved, only decreased, by adjusting p,. This was also the case when some words were
15 times more frequent than the least common words. This would indicate that py could
be used for good segmentation performance but not p,.

One way to do segmentation using a recurrent network is to look at the distance between
the stimulus pattern and the resulting pattern after relaxation. In figure 6 we compare the
segmentation on noise free data with the ideal case where the words are learned at a fix
position (f13) versus all positions (al3). In the former case the words were learned until no
further improvement in segmentation could be achieved. The words were in this case of the
same length as the network.

In figure 7 we see how the segmentation quantitatively depends on py when we have noise
in the learning data. A noise level of 0.4 means that the probability p(wrong character) =
0.4 during stimulation for each population.
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Abstract

We model a part of a process in pulp to paper production using feed forward connected
neural networks. A set of parameters related to paper quality is predicted from a set of
process values. The predicted values are results from laboratory experiments which are
time consuming. We check for irrelevant inputs and we manage with training sets that are
considered small. The output vector is separated into single values which are predicted on
different architectures adapted to each output. A strategy that continuously adapts the
process model seems to be useful. In this work the backprop learning algorithm been used.

1 INTRODUCTION

The general problem is to model a process P as vector transformations. The actual process
that is modelled has as inputs a known parameter vector , an unknown parameter vector
y and a random disturbance vector d. The process’ output vector o is thus

o= P(z,y,d)

The process P may have a memory and be a function also of its parameters and output
history but for simplicity we assume that it is not. The problem is to make a model that
can predict the process’ output vector o when only the vector x is given. The actual vector
x is however, also unknown. Due to physcial measurement errors, manual input errors and
approximation errors the input vector x is also an estimate. The modeled vector output
thus becomes

-

0 = Ppodel (i:)

The specific problem in this study was to investigate how some measures of pulp quality
could be predicted. These values are results from laboratory experiments and should be
predicted from a set of input parameters that are obtained from quick automatic experi-
ments and some additional information about the process. The laboratory measurements
that are predicted are csf, density, elongation, tear and tensile with the emphasis on tear
and tensile.

In the following will a process signal refer to either a process input or output value.
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2 METHOD

The computational method developed for this study uses feed-forward artificial neural net-
works with the error back-propagation learning algorithm. This algorithm, which is most
often called just back-propagation, will not be described here. There are several text books
available on this subject. A theoretical textbook that describes this and other neural
network principles is for instance “Introduction to the Theory of Neural Computation”
[HKP91]. General introductions to the field are [MRtPRG86], [RMtPRG86], [MRtPRG8S],
[Neu90], [Nie90] and [NI91].

The back-propagation learning method is just one of several artificial neural network
algorithms which are available today. The reasons for selecting this method here is that it
is both well understood and straightforward to use. It is also, for these reasons, the method
that has become the most used neural network method in the industry today.

1 Tools and Environment

The tool that is used for the back-propagation network learning and execution is “Aspirin/
MIGRAINE” release V5.0 [Lei91]. This is a set of programming tools for neural network
simulations which has been developed by an internally funded research effort at the MITRE
Corporation. These tools include a compiler for a neural network description language
“Aspirin” and a user interface “MIGRAINE”. The software is written in C and the Aspirin
compiler generates C code as output that is automatically compiled and linked together with
the MIGRAINE interface to create an application program that runs the specific network
architecture(s) that is described in the Aspirin file.

The MITRE corporation decided to release this software March 1988 from V4.0 free of
charge, publicy available. It may be freely used and modified for research and development
purposes. The only requirement is that it is briefly acknowledged in any research paper or
other publication where this software has made a significant contribution. If the software
will be used for commercial gain the MITRE Corporation has to be contacted for further
conditions of use.

The Aspirin/MIGRAINE software package is easily installed and runs on most UNIX
systems. Tested systems are for instance Apollo, Convex, DecStation, IBM RS/6000,
486/386(System V), HP 9000, NeXT, News, Silicon Graphics and Sun. It also supports
some coprocessor boards that can be added to a UNIX host, at the current writing these
include 1860 boards and iWarp Cells. During the current writing it was announced that
Aspirin V6.0 is available.

For diagram generation the “GNUPLOT” V3.2 interactive plotting program has been
used. This package is also free of charge and installs on all UNIX systems plus some others.

2 Method Development

The investigations performed in this report have resulted in the development of a method
for preprocessing of data, doing an iterative search through different network architechtures
and the removal of non significant network inputs. This code is written in the language
scheme ([WC91]) and has been made so that this is the only interface needed to run the
learning and prediction through MIGRAINE on a UNIX work station.
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3 Specific Settings Used

To make it easier to repeat the experiments that have been done in this study, a few words
about some specific control parameters, especially to the Aspirin/Migraine interface. A
typical command line for learning would be “command -I 1000000 -1 -d df -F net-name -t
10000 itok 0.05 -s 10000 -a 0.05 -F net-name save-name”. For other parameters like inertia,
default values have been used.

command This is the name of the compiled and linked MIGRAINE code for a specific
declaration file. For a two layer net with seven inputs, ten hidden and one output
this will, with the syntax used here, be “..bp/7.10_1”.

-1 1000000 The upper limit for the number of learning iterations to run. This is not the
same as epochs, which can be obtained by dividing the number of iterations with the
size of the training set.

-t 10000 itok 0.05 Tells how often the test network will be tested and how many samples
that have to be correct to see if it has reached the error limit. The “itok” has typically
been set to the numbers of vectors in the training set. The error limit has typically
been set to 0.05 when one want to learn the train set as good as possible within the
iteration limit. For the continuous learning case the error limit has been set to a
specific limit for each item to save time.

-a 0.05 The learning rate, “alpha”, has typically been set lower or equal to the error limit.
Alpha has typically been started on 0.1 for a limited number of iterations, like 100000,
then decreased to 0.05.

3 DATA

1 Input and Output Data

The data that has been processed in this study is a set of vectors consisting of process
input parameters and automatically and manually measured process outputs. The manually
measured output values being predicted are csf, density, elongation, tear and tensile. Nine
process inputs, most of them automatically measured, have been used. For proprietary
reasons these inputs are called par! — par9 here. The names and ranges of the input and
output values used are shown in table 1.

2 Data Selection and Filtering

As the network learning algorithm will do a regression analysis of training data to create
an input output mapping with as little error as possible, we need training data of as good
quality as possible. To increase the quality some filtering of the data has to be done. There
may be several reasons for filtering out data. Data may simply be missing, for instance due
to some missed manual input, or data may be erroneous. In this study there has not been
any possibility for any consistency check, i.e. , checking that each value in an input vector is
reasonable considering all the other values. The only thing we could do was to remove data
that obviously was outside some extreme limits. The limits for the acceptable range for
each item was decided from histograms showing the distribution of each parameter. These
histograms are shown in appendix A.
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parameter range

csf 250  --- 449

density 523 --- 665

elongation | 3.9 --- 6.3

tear 116 --- 16.5

tensile 608 --- 84.7 Table 1: The set of signals used listed
parl 0 xE 6 with their active ranges. For two of the
par2 0 ... 100 input values, par2 and par6, there were
par3 0 ... 100 many values missing. Of this reason
par4 0 ... 100 these two signals were skipped from the
par5 2092 ... 459 input data set.

par6 6.3 --- 14.1

par7 222 --- 309

par8 255 .-+ 367

par9 51 -+ 75

The total amount of data samples that have been available in this investigation is around
200 vectors from one process and around 50 vectors from another process. The set of 50
vectors was considered too small to make use of at the present time. Also the set of 200
vectors is a small set for some of the more complex nets that have been tested, why one
should be cautious in drawing conclusions too far. After filtering the set of 200 vectors, by
removing those vectors that obviously contained input values that were outside reasonable
limits, we ended up with 110 vectors of good quality that could be used for training and
testing. This may seem to be very few, but it was considered more important to have a
good quality on those that were left than to risk learning of erroneous vectors. In the first
experiments we tried to filter the data set selectively for each output parameter to not
need to remove more samples than necessary but later on we removed all sample vectors
containing some bad value.

3 Preprocessing and Scaling

In the preprocessing of data that is done before presenting it to a network, the first step
consists of filtering out vectors where some of the signal values lie outside some accepted
range. If too many values of a signal lie outside the accepted range then the whole column
for that signal is removed and will not be used as input or output to the network. The data
is then transformed to a form that is suitable as inputs to a network. In this study all signals
have been construed as continuous valued data. The simpliest way to represent continuous
valued variables as, for instance, csf above, is to let the analogue output value of a unit be
proportional to the actual value. In that case only one neuron is needed to represent each
value. The output value of a neuronal unit is normally, of practical reasons, limited. It
is therefore necessary to scale the parameter values to fit within the limited output range.
The scale has been chosen so that the parameter range is mapped to fit within an almost
linear piece (0.25---0.75) of the sigmoid output function of the units (figure 1). There are
not the same limitations of the input signals, but for practical reasons all inputs have been
scaled to lie within the same range as the outputs, i.e., 0.25---0.75.
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Figure 1: A sigmoid function, in this case
(exp (—kz) + 1)™", with three different k. This
kind of squashing function is the most com-
monly used one to make the output of a neu-
ral unit non-linear. The output of a unit will
show an almost linear response for a small input
range, otherwise the output is limited, often to
the interval 0. ..1.

4 RESULTS

To be able to classify how well a network predicts a parameter one needs some measure of
quality. In the following we have used the average error (merr) and the standard deviation
(sigma) for the difference between actual and predicted signal. The standard deviation and
the average error are both expressed in percent of the dynamic range for the predicted signal.
The average error is good measurement to see if there is some some offset or systematic error
in the predicted values. The standard deviation is a well established error measurement,
the formula used for its calculation here is

Z(%-L)

a1 Li

n—1

1 Partitioning of Input Data

Before training a network, the data set has to be splitted into a training part and a test
part. This has to be done to be able to measure the generalization capability of the network,
i.e. , its performance on data it has not been trained on.

For some experiments the data has been splitted in four different ways, first, last, random
and split. These are illustrated in figure 2. The partition “First 75%”, for instance, says
that 75% of the total amount of data has been picked consecutively, starting from the oldest
sample. “Last 75%” is similar but goes backwards starting from the most recent sample.
For “Random 75%” the samples have been picked according to a rectangular distribution
from the whole interval. The “Split 3-1” separates the data systematically, three to the
train set, one to the test set and so on. These four ways of partitioning data are called
“first”, “last”, “rand” and “split” in table 2 and “fi75”, “la75”, “rn75” and “sp31” when
they occur in most other tables, like in appendix B. A column head like csf.fi75, tells us
that this is the output signal csf predicted with the partition “First 75%”.

Too see what difference the type of data partition can make, look at table 2, which has
been extracted from the tables in appendix B. What is shown is the prediction quality
averaged over all architectures for four different partitions of the data set. As the “last”
partition shows the highest error rate it indicates that the first 25% of the data set would
behave different than the rest. This could be interpreted as that something has happened
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with the process during the first sampling period. Further, if we assume that the output
signals and the input parameters would change slowly, but mainly caused by other factors
than the input parameters, then the best guess would probably be that the new value is
just close to the old one. In such a case it could be expected that the systematic “split 3-1”
partitioning would perform best. For c¢sf and tensile we actually get the best performance
with the “split” partition. The difference may, however, not necessary be significant for a
conclusion. For industrial process signals are, of course, predictions about the closest future
the most interresting to make. Of this reason, most of the prediction experiments have been
done by using the “First 75%” partition.

First 75% Last 75%

] I
LN ~.\
Test

Random 75% Split 3-1

Figure 2: Four different partition types, which have been used. In all four cases have 75
% of the input data been used as training data.

first | last | rand | split
cst 14.1 | 37.8 | 14.3 | 11.2

den51ty. 12911 15.3 9.9 | 144 tested architechtures. As “last” shows
elongation | 8.0 | 12.0 | 10.9 9.6 the largest error for all outputs it indi-
tear 14.0 | 26.6 | 12.3 | 13.9 cates some change in the process during
tensile 15.7 | 16.5 | 13.2 | 12.9 the first sampling period.

Table 2: Prediction performance for
different partititons, averaged over all

2 Finding a Good architechture

The network algorithm makes the input output mapping by adapting the weights of the
network to the training data. If certain criteria of the training set are fulfilled, like that each
input vector corresponds to a unique output vector or value, then the mapping function
of the network can be done with arbitrary precision if we choose a network which is just
complex enough. If the network get too complex, however, it will probably generalize badly.
This problem can be thought of as similar to finding a polynomial approximation to some
function. If the polynomial degree is too high it will probably approximate the actual
function badly due to noise in the regression input data.

If there is a big amount of training data available the network can be allowed to be
rather complex. In the case studied here we tired five different architectures from a simple
one layer, i.e., where the output is just a linear combination of its inputs, to a three layer
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architechture. Three different two layer networks have been tested where the three layer
network had about the same complexity as the two layer network with 20 units in its hidden
layer. See figure 3 for a clarification of this. The number of inputs have varied but the first
hidden layer has had 10, 20 and 30 units. The three layer net had 10 units in both hidden
layers. The syntax used in result tables is like: “7_20_1” or “7-10.10_-1" where the first
means 7 inputs, 20 in hidden and 1 output and the second is 7 inputs, 10 hidden, 10 hidden
and 1 output.

Figure 3: Two networks with about the same complexity. With the syntax used in this
document to denote network architectures they would be described as M_N_O (4.8_1) and
M_N1.N2_0O (4-4.4.1) respectively. The number of weights in the left one is ((M +1)N) +
(N +1)O = 49 and in the right one (M + 1)N1+ (N1 +1)N2 + (N2 +1)0 = 45.

In figure 4 below, we can see how two different networks performs on a training and
a test set of the parameter elongation (stretch in diagram). A one layer network, which
corresponds to a linear system of equations, and a two layer network with 30 units in the
hidden layer.

2.1 Performance on different architechtures

When doing a prediction of some output parameter we normally don’t know in advance
how complex the problem is. It may be linear in the sense that each output can be written
as a linear combination of its inputs or it may be so complex that it needs several hidden
layers with a lot of units. To get a picture of how complex the problem is for each output
parameter each of them has been been run separately on several different architechtures
(Appendix B). Table 3 shows the average of the standard deviations of the prediction error
over different partitions for the output parameters csf, density, elongation, tear, and tensile
when these are learned on different architechtures. From this table it may be a preliminary
proposal that csf and tear are best predicted using a linear combination of its inputs when
elongation seems to do best with a two layer net and density and tensile seems to make best
use of the properties of the three layer network.
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Figure 4: On the left is shown how two networks have adapted to a 75% training set
for elongation (stretch in diag). The upper diagrams show a one layer, i.e. , a linear
combination, network and the lower diagrams show a two layer network. The standard
deviations for the errors are shown in the diagrams. On the right we see the prediction
performance for the same nets on a 25% training set.

3 Requirements on Cpu-time

The backpropagation learning algorithm is a numerical method that is similar to gradient
descent, i.e. , a way to find an optimal solution (a minimum), versus some set of adjustable
parameters, to some function under some boundary conditions. In the neural network case
the adjustable parameters are the weights and the function to minimize is the output error.
The time to train a network is not a simple function of the number of weights, neither is it
a simple function of the number of training samples. If there was just one optimal solution
then the time to find the optimum could grow faster than polynomial in the number of
weights. There may often, however, in a large network be multiple solutions that are equally
good. Generally speaking, it takes a longer time to train a more complicated network. In
the experiments performed in this study we have run the training until a specified error
limit was reached, or until a maximum number of iterations has been performed. In the
tables in, for instance, appendix B the table include the value “Kepo” that is the number
of thousands of training epochs. One epoch is when all training samples have been used
once. In figure 5 it is shown how “Kepo/hour” decreases when the number of weights
increases. When the experiments have been run the iteration limit has been set so that the
most complex net should come no further, which means that the less complex nets have run
many more iterations than necessary. The nets that have been used here need no more than
an hour to to retrain completely on a reasonable fast personal computer or a workstation.
It should be noticed that a larger training set would not make the training time significantly



106 SUPPLEMENT VI: REGRESSION MODELLING

TRAIN set | 7.1 | 7-10_1 | 7201 | 7.30_1 | 7-10.10-1
csf 10.0 6.8 6.8 6.7 6.9
density 11.2 94 9.2 9.3 9.7
elongation | 12.6 7.8 7.9 8.0 8.4
tear 12.9 104 10.2 9.8 9.6
tensile 12.1 9.5 9.5 9.6 9.9
TEST set

csf 11.7 13.4 21.9 20.9 18.2
density 13.8 13.9 13.6 13.1 11.3
elongation | 11.4 9.8 9.6 9.5 10.4
tear 13.4 17.5 19.5 19.2 14.3
tensile 14.4 13.7 16.0 15.7 13.0

Table 3: A more complex architechture generally performs better on the training set but
may cause a bad performance on the test set. Here it seems like csf and tear just need
one layer but elongation needs two and density and tensile needs three layers.

longer. If the set of training samples is too small compared with the network size, then the
training time would be rather small also for a complex net but with a bad generalization
capability.

K EPOCHS / H vs VEI GHTS

Figure 5: Number of K epochs, i.e., number
of thousands epochs per hour, plotted versus
200 | 1 the number of weights for five of the networks
that have been used in this study. The timing
which has been plotted here is for the networks

oot ] 7.1, 72101, 7-20_1, 7-10_10_1 and 7_30_1 with
50 | 1 stretch as the output. It was measured on a
0 ‘ ‘ ‘ ‘ ‘ DecStation 5100.
0 50 100 150 200 250 300
VEI GHTS

4 Selection of Significant Inputs

When we learn a function by examples it may be so that an output is much dependent on
some of the inputs, but it can also be so that the actual function that we try to predict is
not at all dependent on a specific input parameter. In the latter case when we adapt the
network to the training data the algorithm will of course try to adapt the network also to
those variables that the output is actually not a function of. When this network then is
used on test data, these non significant inputs may act just as random disturbances.

If plotting just one variable versus another we can visually get a feeling that one input
is clearly dependent on some other input as in figure 6 or that they are mostly independent
as seems to be the case in figure 7. This is however, not easy to do visually when dealing
with multi dimensional data.
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Figure 6: These two variables show a clear Figure 7: These two variables seem to be
correlation. uncorrelated.

4.1 Input sensitivity test

The method used here to find the input parameters that have the greatest impact on
an output value is to first train a network with all input parameters available and then
test how much the prediction capability of the network is affected when each of the input
parameters is “removed”. The removal of the input has been done here by replacing the
input with its average value. The tables in appendix C show how each of the parameters
have been predicted from all the others. The tables are arranged from greatest impact
to smallest. The table 4 below can also be found in appendix C. These two tables show
how the prediction performance on the test sets for tear and tensile is affected when each
of the other parameters are replaced with its average. A “—” signifies that none of the
inputs were missing. An interpretation is that tear is mostly affected by the input pars,
and tensile by the parameter par4. Another interpretation may be that parl, csf, par7 and
density may not be significant for tear. In the same way density, tear and par3 appear to
have a low impact on tensile. It may be noted that the error difference when an input is
“removed” and when it is available in most cases here is to small to give an answer with
high significance for the small input data sets that have bee used.

4.2 Removal of non significant inputs

The tables in appendix D show how the performance is affected when the inputs that in
appendix C caused an improvement on the results of the test set when they were removed
from the train and test sets. In some cases they have been run on more than one architech-
ture, both the architechture as in appendix C and some other architechture where they
previously showed a good result.

4.3 Removal of Lab Data inputs

In the results shown in appendix E the strategy for removal of inputs have been a little
different. The inputs here do not include those that are time consuming to measure, i.e. ,
csf, density, elongation, tear and tensile. Further, if some input showed to be insignificant
on the training it was removed. The tests have been performed as in appendix C.

These tests indicate that the pulp type, indicated by par2, pard and parj is significant
for both tear and tensile. We can see that the par! seem to bee of some significance for csf,
elongation, par9 and tensile.
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tear %sigma | Y%merr tensile %sigma | Y%merr
par3 22.3 6.1 par4d 20.7 -19.2
par9 20.0 0.7 csf 16.1 -7.6
elongation 19.2 -1.0 elongation 15.7 -7.8
pard 17.7 -0.9 par9 15.4 -7.5
par8 17.4 -1.1 pard 154 -7.1
pard 17.3 1.3 parl 15.3 -6.9
tensile 17.2 4.3 par7 15.3 -5.1
— 17.1 -0.3 par8 15.2 -7.5
parl 16.5 -1.9 — 15.2 -7.5
csf 16.5 -0.3 density 15.1 -7.1
par? 16.2 6.2 tear 14.2 -12.7
density 16.2 0.1 par3 13.8 1.3

Table 4: From appendix B. Prediction performance on the test set. The properties pari,
csf, par7 and density seem, from this test set, somewhat less important for tear than pulp
type and fiber length. Also for tensile it seems as pulp type has a high significance. The
error differences here are probably to small to tell that some of these input signals are
irrelevant for tear and tensile.

5 Different Learning Strategies
5.1 Instant prediction

The prediction being performed in the previous examples is based on the instant input
values only. The assumption is that the predicted process has no memory, i.e. , an output
is a function of the momentarily input values only and does not depend on the history of
an input or output.

As a simple example of a process that can not be predicted this way. Imagine that
the process we model is the output voltage from a capacitor being charged with a current
proportional to the input voltage. In such a case nothing can be said about the output
values by just looking at the instantaneous input values.

5.2 Continuous learning

If the process which is modelled would change its characteristics over the time, then it could
be expected that we could improve the prediction result by making the network a one step
predictor. The idea is that we let the network learn the behaviour of the process during a
limited time span. The process outputs are then predicted from the next input vector being
measured. When the actual output vector, which was predicted, becomes available, this
can be used as new training data for the network. The oldest sample is then thrown and
replaced with the newest one. The figure 8 below shows how tear is predicted with a one
layer and a two layer network using parl, par8, pars, par9, , parj and par8 as inputs. The
performance according to the standard deviation is about equally good with 12.0% for the
7_1 net and 12.3% for the 7_10_1 net. The latter net does, however, show a better error
distribution with no offset why that one would be to prefer. In figure 9 it is shown how
many learning iterations that has to be done for each new sample to reach the same error
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performance that was obtained on the first traning set. With “iterations” is here meant the
number of separate training patterns that has to presented for the network. A low number
shows that the network could be quickly retrained within the goal to keep the error level
low. A high value here indicates that the network could not learn the new sample within a
limited number of iterations.

In appendix F the one step predictor performance for the continuous learning case is
listed for csf, density, elongation, tear and tensile. The columns “%sigma” and “%merr”
there, as before, stand for percent standard deviation and percentage mean error. There is
also a column “maxerr” that shows the largest error as predicted — target in actual units.
Diagrams for error distribution use the range of the neuron outputs. There are also diagrams
for the number of iterations needed to relearn the network after each sample. In most cases
when the whished error limit could not be reached quickly, the number of iterations have
reached their limit. This is also a nice result in that sense that a much lower threshold on
the number of the limit iterations can be set without affecting the performance.

T T T T
“tear.fi75.7_1-.test.targ 4— “tear.fi75.7_10 1-.test targ ——
“tear.fi7!

5700 test ot sl Frear {175, 7.10.1"  test. outr |

“tear.fi75.7_1-.test.edist’ --— tlear. fi75.7_10_1-. test.edist’ ——

@

Figure 8: The property tear predicted with a one-layer (left) and a two-layer (right) net.
They perform equally well but the two-layer net has a better error distribution with no
offset, thus, the two-layer one would be preferred here.

5.3 Continuous learning, Tear and Tensile

In appendices G and H we have studied the tear and tensile in particular. In this case
more samples have been used than in the previous examples. The original data set size is
the same but here only those sample vectors containing bad values that would affect tear
and tensile have been removed in the preprocessing. We then ended up with 179 useful
sample vectors. The training approach was here a little different from the previous section.
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Figure 9: In the continuous learning
case the number of learning iterations
may vary widely for each new sample.
A high iteration count here tells us that
the whished error level not could be
reached for a certain sample.
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The network has been trained until no significant improvement could be obtained on the
test set. Then, for each step forward, the network has been retrained but it has not been
allowed to retrain fully. The number of iterations has been limited to about 200000. The
idea behind this is to produce a kind of inertia, i.e., a small variation in the input would
not cause a drastic change of the network parameters.

The same length as in previous section , i.e., 82 samples has been used as the training
set for prediction of the next sample. This means 46 % of the total set. We can see from
the table in appendix G that the best result here is obtained from the linear, one layer
network in the case with continuous learning. The 7-10-10_1 could probably have given a
better result if it had been allowed to retrain fully as is indicated by the retrain iteration
counts diagram.

When we look at the result for tensile in appendix H we see that we also here get the
best result from the one layer network with continuous learning.

There is a great prediction failure between sample number 15 to 30 for all the multilayer
networks where the one layer network performs rather well. This is probably an indication
of too few training samples. The tensile target is rather rugged as can be seen from the
diagrams. The multilayer nets have tried to adapt to this shape. If the jaggy shape actually
is there due to some distorsion or measurement errror then it could be expected that the
more complex nets would try to adapt to this too quickly with too few training samples
available.

5.4 Fixed learning, Tear and Tensile

To get a chance to compare the performance of the continuous learning case with the one
where we have trained the net only on the beginning of the history for the same data as
in the previous section, here 82 samples, these are shown in appendices I and J. The one
layer network here seems to have no possibility to follow the tricky part between sample
15 to 30 that appear both in tear and tensile. There seems to be information about this,
anyway, in the training part as all the multilayer nets react on this interval. Here one can
see that the number of units in the hidden layer have a great influence on the capability to
cope with the sample interval 15 to 30. One interresting result is of course that the three
layer net 7.10_10_1 detects the interval perfectly but goes in the wrong direction both for
tear and tensile in this interval.
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5.5 Temporal prediction

The Aspirin tool which has been used here supports three forms of temporal coding. One is
to have recurrent connections from delayed replicas of outputs that can be weighted in on
any layer. The delay can be from one to four steps. Another form is to delay the inputs one
or several steps and present these delayed inputs through weights for some layer. A third
method is to do averaging over several input and present the average value through weights
for the network. These methods can of course be combined. If one of these methods was
going to be used here it is of course hard to say which method would be best. This would
depend on the problem. The results here does not include any of these temporal codings.
There are some problems with temporal coding that have not been solved. One problem
is that the samples are not equidistant in time, thereby making it necessary to do some
kind of extra preprocessing so that the samples become equidistant. One such way is to do
linear or spline interpolation between the samples.

5.6 Limited history

In an implementation of this method the learning strategy will probably be some form of
continuous learning. In such a case it may be important to address the problem of which
size of the history that is preferrable to learn. The reason for this is that the process may
change due to external environmental changes that are not measured. In such a case will
the old history more act like disturbances.

6 Best Results

In table 5 below are the best results that were obtained in this study extracted. The table
shows the signal name, the partition strategy, the learning strategy, the parameters standard
deviation and its average error. The table does only include the outputs csf, density,
elongation, tear and tensile. It may be noted that the table with best possible results, any
partition, where the input information is restricted to quickly available parameters, shows
better results than the table where the partition is restricted to the first one, without any
restrictions on the input parameters. If this difference should be treated as being significant
it is interresting, because, if the result depends on the partition then it would indicate that
the prediction may be done better by, for instance, decreasing the size of the history etc.

The most interresting table may be the one that shows the continuous learning case.
This is the case that would most correspond to the reality when doing prediction in real
time, but the results may be possible to improve by, for instance, more samples over a
shorter period, temporal and interval coding. See the section “FUTURE EXTENSIONS”
for a discussion about this. The diagrams with test results for the continuous learning case
are supplied in appendix F. There is also some statistics about the actual input values used
in appendix K.
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Best possible, process data only, any partition

output arch part | sigma | merr | inputs

csf 71 sp31 6.8 | -1.8 | pl1,p8,p5,p9,p7,p4,p3
density 7.10-10-1 | 1a75 9.2 6.8 | p1,p8,p5,p9,p7,p4,p3
elongation | 7-20_1 fi75 7.1 8.2 | p1,p8,p5,p9,p7,p4,p3
tear 71 rn7b 11.7 | -7.6 | p1,p8,p5,p9,p7,p4,p3
tensile 7.10-101 | 1a75 10.8 5.2 | pl,p8,p5,p9,p7,p4,p3

Best with process data and lab data, first partition

output arch part | sigma | merr | inputs

cst 8101 fi75 9.0 7.9 | p3,ten,p8,p7,den,p9,elo,pl
density 7.10_10_1 | fi75 11.9 5.8 | p3,tea,csf,p4,p7,p5,pl
elongation | 7-20_1 fi75 7.1 8.2 | p1,p8,p5,p9,p7,p4,p3

tear 71 fi75 11.9 7.5 | p1,p8,p5,p9,p7,p4,p3
tensile 8.10.10_1 | fi75 14.4 | -4.4 | p4d,csf,elo,p9,p5,p1,p7,p8

Best with process data, first partition

output arch part | sigma | merr | inputs
csf 7301 fi75 13.5 0.1 | p1,p8,p5,p9,p7,p4,p3
density 710101 | fi75 11.9 | 10.3 | p1,p8,p5,p9,p7,p4,p3
elongation | 7.20_1 fi75 7.1 8.2 | pl,p8,p5,p9,p7,p4,p3
tear 71 fi75 11.9 7.5 | p1,p8,p5,p9,p7,p4,p3
tensile 730-1 fi75 153 | -6.9 | p1,p8,p5,p9,p7,p4,p3
Best with process data, continuous learning
output arch part | sigma | merr | inputs
csf 7301 co75 119 | -0.8 | p1,p8,p5,p9,p7,p4,p3

density 7201 co75 13.9 2.6 | pl,p8,p5,p9,p7,p4,p3
elongation | 7.20_1 co7d 8.0 2.3 | pl,p8,p5,p9,p7,p4,p3
tear 71 co75 12.0 2.8 | p1,p8,p5,p9,p7,p4,p3
tensile 7-10-10-1 | co75 14.3 | -3.3 | p1,p8,p5,p9,p7,p4,p3

Table 5: The best results that were obtained in this study. Abbreviations: den=density,
elo=elongation, tea=tear, ten=tensile. parl — par9 are written as pIl — p9.

5 DISCUSSION OF RESULTS

The results of this study have showed that it is possible to do a prediction of certain
laboratory measurements with a fairly good precision. Some important questions that arise
are:

e Are the results good in comparision with other methods?
e Is the precision obtained high enough?

e Can the precision be improved?
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Considering the first and second questions it is not possible to give a concise answer as we
have not had results available from similar experiments with other methods on the same
type and amount of data. Further, the data set underlying our investigation have most
likely been too small to allow an answer with high significance.

1 Prediction Quality

We have reached a prediction quality that lies around 5-10% standard deviation, calculated
relative to the dynamic range of the parameters. Under some circumstances this may be
sufficient and under others it may not. For many of the parameters one should take into
consideration that the actual ranges that have been used are often small compared to the
absolute value of the parameters.

It must be clear, however, that no method can make a better result than what is possible
due to disturbances and measurement errors in the training and test data. If the errors
for these were measured as parts of the absolute values they would be much smaller than
presented here. We did also observe that the prediction quality was rather much dependent
on the type of partitioning into training and test set that was done as was shown in table 2.
This indicates that something has happend in the process from the first to the last sample.
The prediction quality can probably be increased by using more samples and by using more
measurement values. More samples is always better as this allows us to use a more complex
network and more measurement values, like for instance temperatures etc., may allow us to
find other significant inputs.

The coding technique used is also important. By using, for instance interval coding, as
is described in the section “FUTURE EXTENSIONS” below, it may be possible to gain
some more robustness and reasonable solutions also when the data set is inconsistent and
unreliable.

2 Data Availability

The data that has been available for training of the networks has been quite small compared
to what common rules of thumb say. For some of the more complex nets, we should,
considering these rules, have used at least ten times the amount of data that was actually
available. This would be perfectly possible considering training times etc. This shortage
of data has to be taken into account when the results are evaluated. Those cases where
we got a poorer result with a larger hidden layer than with a smaller one, indicate that
the data set was in fact too small. Some less intuitive results, such as the indication that
density would not be significant for predicting tear and tensile may also be attributed to
the relative lack of data.

6 FUTURE EXTENSIONS

Under the assumption that the neural network method developed and studied here is con-
sidered good enough, it may be used almost “as is”, to do prediction of industrial process
parameters. The method could, however, be extended to cover a wider range of usage than
the cases studied here would indicate.
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1 Measurement Estimation

One of the first things we did in this study was to throw away those samples containg data
that could be easily detected as not being within reasonable limits. The reason for doing so
is of course that if we fed this data into the learning network it would learn an illegal input
output mapping. There may be several reasons for data to be outside allowed limits. The
data may either be totally missed due to forgotten manual input or outside limits due to a
bad probe. The reason may also be that laboratory data is missing due to some problems.
It may also be that some tests are so complicated or expensive that they are preferably not
done too often.

In all the cases above in which some data is missing it may not be necessary to throw the
whole sample anyway. Under the assumption that one datum can be reasonably estimated
from a subset of the rest of the data samples, then the missing datum can instead be
replaced with its estimation. Fach parameter can have an optimal associated network that
runs on a timescale suited for the cost and prediction quality for that specific parameter,
thus making all parameters instantly available without explicit measurements.

2 Consistency Check

When a datum has found to be within its allowed extreme limits this does however, not
guarantee that it is valid. A manually fed value may look right but may still be 20 %
from the correct value. A probe may be degraded or need calibration. Assume then, that
a set of networks are used for prediction of each parameter from a subset of the other
parameters. For each new sample that arrives, the network performs a prediction of each
of the parameters. This prediction can then be compared with the value just fed in. Data
can thus be checked sample by sample, datum for datum that it does not significantly
deviate from its predicted value or that it does not cause an extreme value in some other
parameter. This will of course be a great help for an operator doing manual input but
it will also provide a possible way to give alarms about the necessity for recalibration or
replacement of degraded probes.

3 Optimization of Learning Time

The method could probably, with some effort, be extended with optimization of the learning
time. The learning iterations would then be stopped when the performance on the training
set could not be improved and before the performance on the test set would possibly get
worse due to overlearning. This optimization may be a hard problem to solve in a general
way but by using statistics about required iterations versus number of connections this
could probably be done in a “good enough” way. A great advantage with this would be
that the required precision would not need to be set in advance. The network would do the
best possible anyway.

4 Installation of online system

The method studied in this work for parameter estimation can be installed online on a
workstation or on a reasonably fast personal computer, preferrably a UNIX work statiton.
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5 Interval Coding Technique

An important coding technique that has not yet been tested is to use several units to code
for one value. Such interval coding technique can be utilized for both logical (on/off) as
well as for analogue values.

There are several reasons that speak for interval coding. We may first look at the input
values. First it may be so that the precision needed is not rectangular distributed over
the whole input range. An input value range may be distributed into several groups where
all the values lie in clusters with almost no values in between. With an interval coding
technique the available precision can be focused on these groups. One may also want to
indicate the quality of a sample. With interval coding it is possible to lower the significance
for certain samples.

The same reasons why interval coding is good on the inputs is also valid on the outputs.
There is however, one more important reason to have interval coding on the outputs. As
was mentioned previously, a multi-layer network with an architecture complicated enough,
can in principle learn an input output mapping with arbitrary precision if each input vector
corresponds to a unique output vector. If, however, one input vector value can result in
several different output values in the training set, then this set can not be learned completely.
By instead using interval coding on the outputs the possibility to learn the training set can
be increased. It is also possible that the training vectors are nice but during prediction
one may get conditions when the input vector would indicate two or several contradictory
values on the outputs. This situation can also be resolved with the help of interval coding.

In cases with multiple valued outputs this can be interpreted as multiple hypothesis
about the values.

6 Temporal Coding

As was mentioned in section 5.5, there are some temporal representation problems that
have to be solved before a temporal coding of the inputs can be done. One method is
to sample the process periodically, thus making the samples equidistant in time. Another
method, that was previously mentioned, could be to do some kind of interpolation between
the samples. If the process contains some kind of “memory”, then such coding technique
may improve the results further.

7 SUMMARY

This study has focused on the problem of predicting various measures of paper quality
from relevant input parameters. Typically, we have reached a prediction quality of 5-10%
relative standard deviation. The results obtained do not give a complete answer to whether
or not the artificial neural network technique can do better or at least equally good as other
methods. It has, however, indicated that a quite good result can be obtained even though
the amount of data available for training and evaluation of the networks was limited. Some
ways of extending the use of this method to on-line verification and filling in of data has been
proposed. A neural network based technique has an advantage in that it is self-organizing
and capable of adapting to a process that may change with time.
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Appendix A : Histograms
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These histograms show the frequences for the “ANNJ” data set. The “PAR2” has here the same
value for almost all samples and for “PARG” are half of the samples missing why these items could

not be used as inputs.
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Train set Test set
csf fi75 %sigma, | %merr | Kepo csf.fi75 %sigma | Y%merr
71 8.7 -2.7 10.9 7-10-10-1 14.5 24
7201 6.8 0.7 11.2 71 14.4 -5.9
7101 6.7 0.6 11.0 7101 14.3 -0.6
7-30_1 6.6 0.7 11.0 7-20_1 13.8 0.1
7-10-10-1 6.6 -0.3 10.9 7-30-1 13.5 0.1
csf.la7b %sigma | %merr | Kepo csf.la7h %sigma | Y%merr
71 10.1 -1.0 10.8 7201 48.3 23.3
7-30_1 6.8 14 10.8 7-10_1 45.7 26.0
7-10_1 6.7 2.6 10.5 7-30_1 44.7 18.3
7-20_1 6.7 1.0 10.9 7-10-10-1 36.9 23.3
7-10-10-1 6.7 3.8 10.5 71 13.3 -14.6
csf.rn75 | %sigma | %merr | Kepo csf.rn75 | %sigma | %merr
71 10.3 -2.6 11.3 7.10.10_1 16.1 -7.2
7-10-10-1 7.4 -3.5 11.0 7-10-1 15.7 -6.1
7-10_1 7.0 -1.0 11.1 7201 14.4 -6.6
7201 6.7 -1.8 11.3 7-30-1 13.3 -6.3
7301 6.5 -1.4 11.3 71 12.2 -3.9
csf.sp31 Y%sigma, | %merr | Kepo csf.sp31 %sigma | Y%merr
71 10.9 -2.9 10.8 7-10-1 13.7 4.3
7-30-1 7.0 1.4 114 7-30-1 12.2 3.4
7.10.10_1 7.0 2.3 11.5 7.10.10_1 11.9 3.0
7201 7.0 0.5 11.2 7201 11.2 2.6
7101 6.8 1.4 11.3 71 6.8 -1.8
dens.fi75 | %sigma | %merr | Kepo dens.fi75 | %sigma | %merr
71 10.0 -1.3 12.0 7101 14.0 9.6
7101 9.2 0.6 11.6 7201 13.2 8.2
7301 8.5 0.2 114 71 12.8 6.8
7201 8.4 -0.7 11.5 7301 12.7 9.6
7-10-10-1 8.4 0.1 11.7 7-10-10-1 11.9 10.3
dens.]a75 | %sigma | %merr | Kepo dens.la75 | %sigma | %merr
71 12.1 -1.2 12.2 7101 17.7 6.0
7.10.10_1 11.1 -0.6 11.2 7201 17.2 2.9
7201 10.3 -1.2 11.2 71 16.9 -2.0
7301 10.2 -1.0 11.2 7301 15.7 5.8
7101 10.1 -0.7 11.3 7.10.101 9.2 6.8
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Train set Test set

dens.rn75 | %sigma | %merr | Kepo dens.rn75 | %sigma | Y%merr
71 12.3 -12.3 12.3 71 10.6 -14.5
7.10.10_1 104 -1.9 11.6 7201 9.9 -2.8
7301 10.1 -0.7 11.4 7.10.10_1 9.7 -5.1
7101 9.9 -1.5 11.5 7301 9.6 -3.3
7-20-1 9.8 -04 11.3 7-10-1 9.5 -4.5
dens.sp31 | %sigma | %merr | Kepo dens.sp31 | %sigma | Y%merr
71 104 -10.1 11.6 71 14.8 -7.0
7.10.10_1 8.9 -1.2 11.3 7101 14.5 2.0
7301 8.5 -1.0 11.4 7301 14.3 1.8
7201 8.4 -1.1 11.4 7.10.10_1 14.3 14
7101 8.3 -0.9 11.3 7201 14.3 1.9
elong.fi75 | %sigma | %merr | Kepo elong.fi75 | Y%sigma | %merr
71 11.2 -3.3 114 7-10-10-1 9.4 7.6
7201 8.0 0.7 10.8 71 8.3 5.9
7.10.10_1 7.7 1.1 11.2 7101 7.9 7.8
7-30_1 7.5 1.2 11.1 7-30_1 7.3 7.7
7-10_1 7.4 1.2 11.2 7201 7.1 8.2
elong.la75 | %sigma | %merr | Kepo elong.la75 | %sigma | %merr
71 12.5 -5.2 12.0 71 134 -1.1
7301 8.7 -2.4 11.2 7.10.10_1 12.3 -2.8
7201 8.7 -2.1 11.2 7301 11.7 -4.5
7-10_1 8.7 -1.8 11.1 7201 11.3 -4.5
7-10-10-1 8.5 -1.0 11.3 7-10-1 11.2 -3.8
elong.rn75 | %sigma | %merr | Kepo elong.rn75 | %sigma | %merr
71 134 -19.1 12.0 71 12.0 -20.6
7.10.10_1 8.6 -2.6 11.6 7201 10.8 -3.7
7301 8.4 -3.4 11.6 7.10.10_1 10.6 -2.9
7-10_1 7.1 -3.0 11.3 7-30-1 10.6 -4.0
7-20_1 7.1 -2.2 11.3 7-10-1 10.5 -4.6
elong.sp31 | %sigma | %merr | Kepo elong.sp31 | %sigma | Y%merr
71 13.3 -20.3 11.9 71 11.9 -20.3
7.10.10_1 8.9 -2.7 11.3 7101 9.6 -2.5
7101 8.2 -2.0 10.8 7201 9.3 -2.6
7-20-1 8.0 -2.0 10.9 7-10-10-1 9.0 -3.0
7-30_1 7.6 -2.3 11.0 7-30-1 8.4 -2.6
tear fi75 | %sigma | %merr | Kepo tear.fith | %sigma | %merr
71 13.2 4.9 114 7301 16.0 4.8
7101 10.7 0.6 11.6 7.10.10_1 15.3 1.5
7.10.10_1 10.6 1.9 11.3 7201 14.2 4.3
7301 9.9 2.0 11.9 71021 12.7 3.8
7201 9.8 1.9 11.5 71 11.9 7.5
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tear.la75 | %sigma | %merr | Kepo tear.la75 | %sigma | %merr
71 12.3 -9.7 11.7 7201 34.8 -31.6
7201 104 -1.1 11.6 7301 33.7 -26.4
7101 104 -1.4 11.2 71021 30.4 -30.6
7.10.10_1 10.0 -5.4 11.8 71 17.6 -16.0
7-30_1 9.9 -0.8 11.8 7-10-10-1 16.5 -24.2
tear.rn75 | %sigma | %merr | Kepo tear.rn75 | %sigma | %merr
71 13.1 -4.7 12.2 7-20-1 12.9 -5.1
7101 10.6 -2.6 11.9 7301 12.7 -1.5
7201 10.5 -4.2 11.8 7101 12.5 -4.3
7301 10.3 -1.0 11.7 7.10.10_1 11.7 -6.8
7.10.10_1 9.5 -6.0 12.0 71 11.7 -7.6
tear.sp31 | %sigma | %merr | Kepo tear.sp31 | %sigma | %merr
71 13.1 -6.0 12.5 7-20-1 14.7 -0.2
7201 10.2 -0.7 11.9 7101 14.4 -0.0
7101 9.9 -1.4 114 7301 14.3 0.6
7-30_1 9.2 -0.5 11.1 7-10-10-1 13.6 1.1
7-10-10-1 8.2 -1.3 11.3 71 124 -5.1
tensile.fi75 | %sigma | %merr | Kepo tensile.fi75 | %sigma | %merr
71 9.3 0.5 10.0 7-10-10-1 15.9 -4.9
7301 8.1 -04 10.9 7-20-1 15.9 -5.5
7101 8.0 0.1 10.7 7101 15.8 -7.2
7201 7.9 1.9 10.6 7.1 15.6 -5.6
7-10-10-1 7.7 0.3 10.8 7301 15.3 -6.9
tensile.la75 | %sigma | %merr | Kepo tensile.la75 | %sigma | %merr
71 14.0 12.3 12.0 7201 22.3 -5.7
7.10.10_1 12.3 2.3 12.2 7301 214 -4.6
7301 10.8 14 11.7 71 15.0 14.4
7201 10.7 14 11.8 7101 13.1 5.0
7101 10.5 1.2 114 7.10.10_1 10.8 5.2
tensile.rn75 | %sigma | %merr | Kepo | | tensilern75 | %sigma | %merr
71 11.7 4.7 11.5 71 13.6 7.9
7-10-10-1 9.8 -0.2 11.0 7201 134 3.9
7-30_1 9.6 -0.5 11.2 7301 134 3.2
7101 9.6 -1.1 11.3 7101 13.1 2.7
7-20_1 9.4 -0.2 10.9 7-10-10-1 12.6 3.5
tensile.sp31 | %sigma | %merr | Kepo | | tensile.sp31 | %sigma | %merr
71 13.3 16.3 11.7 71 13.3 12.7
7201 10.1 2.8 11.8 7.10.10_1 12.9 -0.9
7101 10.1 2.9 11.7 7101 12.9 -1.6
7301 9.9 2.5 11.6 7301 12.7 -1.9
7-10-10-1 9.8 3.3 11.3 7-20-1 12.6 -1.5
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Appendix C : Find Significant Inputs

Train set Test set
csf %sigma | %merr | Kepo csf Y%sigma | Y%merr
parb 13.3 -0.5 4.7 par3 18.1 -0.1
par3 12.3 -4.7 4.7 tensile 17.9 -1.1
par4 11.6 -1.9 4.7 par8 16.3 -2.1
tensile 9.3 -2.0 4.7 par7 15.9 -1.2
par8 8.6 -0.9 4.7 density 15.7 -2.3
density 6.7 -0.3 4.7 par9 15.7 -1.7
parl 6.7 -0.4 4.7 elongation 15.7 -2.0
par? 6.4 0.2 4.7 parl 15.5 -2.1
tear 6.2 -1.0 4.7 — 15.3 -1.8
elongation 6.2 -1.2 4.7 tear 14.9 -3.4
par9 6.0 -0.8 4.7 par4 12.8 -9.8
— 5.9 -0.5 4.7 parb 10.6 1.8
parl %sigma | %merr | Kepo parl %sigma, | Y%merr
par4 41.2 21.8 9.4 density 40.8 1.4
tear 38.9 2.9 94 pard 39.5 55.0
tensile 38.1 7.0 9.4 par9 38.9 8.3
par3 33.9 47.2 9.4 elongation 38.6 5.6
par7 32.2 7.4 9.4 — 374 5.0
density 31.2 -1.1 9.4 pard 36.7 6.5
csf 30.2 -0.5 9.4 par8 35.3 11.9
par8 28.3 -1.0 9.4 tear 35.3 31.0
elongation 26.4 -2.3 9.4 csf 34.9 7.1
par9 25.4 -0.3 9.4 tensile 324 23.5
par5 25.1 29| 94| | par? 29.7 | 302
— 23.9 1.2 9.4 par3 29.3 50.5
density %sigma | %merr | Kepo density %sigma, | %merr
par3 17.2 -0.6 8.0 par3 17.3 0.8
tensile 14.0 4.7 8.0 tear 16.6 6.5
pard 11.5 -1.8 8.0 csf 15.9 8.6
csf 9.1 -0.0 8.0 par4 15.7 8.1
par8 8.9 0.2 8.0 par7 154 9.7
parl 8.8 -1.6 8.0 pard 15.2 8.2
par9 8.6 3.1 8.0 par9 14.9 8.9
par7 8.5 -1.6 8.0 — 14.7 9.5
tear 8.2 1.7 8.0 elongation 14.6 10.0
elongation 8.1 3.2 8.0 par8 14.4 9.3
parb 7.0 1.3 8.0 parl 14.3 7.3
— 6.0 0.9 8.0 tensile 12.6 14.1
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elongation | %sigma | %merr | Kepo elongation | %sigma | %merr
par? 11.1 4.6 5.3 par7 10.3 14.0
par8 10.2 0.6 5.3 par8 9.3 7.9
par3 10.0 3.6 5.3 par3 9.1 11.8
par4 9.6 2.9 5.3 par9 9.0 5.9
tear 8.7 1.4 5.3 tear 8.8 13.6
parb 8.7 1.7 5.3 par4 8.6 12.8
tensile 8.6 1.1 5.3 parb 8.5 8.3
parl 8.1 1.9 5.3 tensile 7.9 8.2
par9 7.7 1.5 5.3 csf 7.8 9.2
density 7.6 1.7 5.3 — 7.8 9.3
csf 7.6 1.5 5.3 density 7.7 9.7
— 7.4 14 5.3 parl 7.3 11.0
par3 %sigma | %merr | Kepo par3 %osigma, | %merr
pard 42.5 -13.7 1.5 par4 27.6 16.0
tensile 20.1 5.0 1.5 tensile 14.3 8.8
par? 8.5 -6.8 1.5 csf 10.0 4.3
par9 7.3 1.2 1.5 par9 9.5 2.6
csf 7.0 0.2 1.5 par7 9.0 -0.9
tear 5.4 0.0 1.5 tear 6.7 4.0
elongation 5.2 -0.6 1.5 elongation 6.3 5.8
parl 4.5 -0.7 1.5 par8 4.9 5.1
par8 4.3 -0.2 1.5 parl 4.6 4.6
density 4.1 -0.6 1.5 — 4.6 4.9
parb 3.8 -0.5 1.5 parb 4.3 5.0
— 3.7 -0.3 1.5 density 3.9 4.6
parb %sigma | %merr | Kepo parb %sigma | %merr
csf 4.1 0.5 2.2 par8 4.9 -14
par8 3.9 04 2.2 par4 4.5 -0.9
tear 3.2 0.9 2.2 tensile 4.0 -1.3
par4 3.1 0.4 2.2 — 4.0 -1.4
elongation 3.0 0.5 2.2 par7 4.0 -1.3
par3 3.0 0.5 2.2 parl 3.9 -14
tensile 2.9 0.5 2.2 elongation 3.9 -1.5
par9 2.9 0.6 2.2 density 3.9 -1.5
parl 2.8 0.5 2.2 par9 3.9 -1.5
— 2.8 0.6 2.2 tear 3.7 -2.3
density 2.8 0.5 2.2 par3 3.7 -1.7
par7 2.8 0.5 2.2 csf 3.3 -14
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Train set Test set

par? %sigma | %merr | Kepo par? %sigma | %merr
pard 49.0 374 8.7 tear 48.6 -53.8
par3 37.4 35.6 8.7 pard 40.9 -22.0
tensile 33.3 -5.8 8.7 elongation 37.5 -21.9
tear 29.0 -5.5 8.7 — 35.8 -21.7
parl 23.6 08| 87| |par8 352 | -17.8
par8 23.6 -0.4 8.7 pard 35.1 -18.7
csf 22.2 2.5 8.7 density 32.6 -17.7
density 21.8 04 8.7 csf 31.9 -20.1
elongation 20.8 -0.7 8.7 parl 314 -14.5
par9 20.4 4.9 8.7 tensile 28.0 -8.5
parb 16.9 -0.4 8.7 par9 28.0 -7.0
— 15.0 -0.5 8.7 par3 14.3 9.6
par8 %sigma | %merr | Kepo par8 %sigma, | %merr
pard 18.0 9.0 6.0 par4 14.5 -13.0
par3 16.8 -4.1 6.0 tear 124 -12.3
pard 14.0 -1.4 6.0 par9 12.0 -5.7
par9 11.0 -1.9 6.0 par7 12.0 -8.3
par? 10.7 1.2 6.0 tensile 11.2 -8.5
elongation 9.9 0.1 6.0 parb 10.7 -5.1
csf 9.6 1.8 6.0 par3 10.7 -3.9
tensile 8.6 -0.4 6.0 — 9.7 -9.2
tear 7.8 0.7 6.0 elongation 9.5 94
parl 7.7 3.1 6.0 parl 9.1 -7.3
density 6.4 0.6 6.0 density 8.5 -8.0
— 5.3 1.1 6.0 csf 7.8 -8.3
par9 %sigma | %merr | Kepo par9 %sigma | %merr
par4 6.4 -1.1 0.6 par4 6.6 6.4
par3 4.2 04 0.6 tear 3.8 4.2
par8 3.3 -0.2 0.6 csf 3.6 3.6
tear 3.2 -0.4 0.6 tensile 3.5 3.7
tensile 3.1 -0.3 0.6 density 3.3 3.5
csf 3.1 -0.2 0.6 par3 3.3 2.2
elongation 3.1 -0.2 0.6 parl 3.3 3.4
par7 3.1 -0.1 0.6 par7 3.2 3.2
density 3.1 -0.2 0.6 — 3.2 3.6
parl 3.0 -0.1 0.6 pard 3.2 3.7
parb 3.0 -0.2 0.6 elongation 3.1 3.6
— 3.0 -0.2 0.6 par8 3.0 3.5




Train set Test set
pard %sigma | %merr | Kepo pard %sigma | %merr
par3 40.6 15.5 2.4 tensile 31.2 15.3
tensile 38.1 15.4 2.4 par3 21.5 4.3
csf 6.6 0.5 2.4 par9 17.3 5.2
par9 5.8 1.5 2.4 tear 14.9 5.3
elongation 4.5 0.8 2.4 csf 13.7 4.9
density 3.8 -0.3 2.4 elongation 13.7 4.3
tear 3.4 0.3 2.4 par8 114 3.8
par7 3.4 -1.1 2.4 parl 104 2.8
par8 3.4 -0.2 2.4 — 10.3 2.9
par 3.0 01| 24| | pard 10.0 2.6
parl 2.8 -0.1 2.4 par7 7.4 2.7
— 2.8 -0.1 2.4 density 6.6 1.7
tear %sigma | %merr | Kepo tear Y%sigma | Y%omerr
par3 16.2 -0.3 6.6 par3 22.3 6.1
par4 14.7 5.6 6.6 par9 20.0 0.7
tensile 14.6 -1.0 6.6 elongation 19.2 -1.0
par? 13.0 1.9 6.6 par4 17.7 -0.9
elongation 10.5 -2.6 6.6 par8 174 -1.1
csf 9.5 -0.9 6.6 parb 17.3 1.3
par9 9.1 -3.4 6.6 tensile 17.2 4.3
parl 8.6 -4.1 6.6 — 17.1 -0.3
pard 8.5 -2.1 6.6 parl 16.5 -1.9
density 8.5 0.3 6.6 csf 16.5 -0.3
par8 8.2 -1.2 6.6 par7 16.2 6.2
— 76| 16| 66| | density 16.2 0.1
tensile %sigma | %merr | Kepo tensile %sigma | Y%merr
par3 19.2 -3.8 3.9 par4 20.7 -19.2
pard 18.5 -0.9 3.9 csf 16.1 -7.6
tear 10.1 -1.0 3.9 elongation 15.7 -7.8
par8 8.2 -1.2 3.9 par9 15.4 -7.5
par7 7.9 -0.5 3.9 pard 15.4 -7.1
csf 7.9 -1.0 3.9 parl 15.3 -6.9
density 7.8 -0.6 3.9 par7 15.3 -5.1
elongation 7.6 -2.0 3.9 par8 15.2 -7.5
parl 7.5 -1.1 3.9 — 15.2 -7.5
parb 7.4 11| 39| | density 15.1 7.1
— 7.4 -1.0 3.9 tear 14.2 -12.7
par9 7.3 -1.2 3.9 par3 13.8 1.3
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Appendix D : Non Significant Inputs Removed

Train set Test set
cst.fi75 | %sigma | %merr | Kepo cst.fi75 | %sigma | %merr
8.1 15.9 19.8 23.6 8.1 13.9 23.0
8101 7.9 2.4 22.1 8101 9.0 7.9
parl.fi75 | %sigma | %merr | Kepo parl.fi7T5 | %sigma | %merr
4301 34.5 0.4 13.1 4301 25.3 18.0
dens.fi7T5 | %sigma | %merr | Kepo dens.fi75 | %sigma | %merr
710101 89 | 12| 224 7301 12.3 5.1
7.30.1 89| 04| 223 7.10.10_1 11.9 5.8
par3.fi75 | %sigma | %merr | Kepo par3.fi75 | %sigma | %merr
8301 5.3 -2.2 0.9 8301 3.4 3.0
par5.fi75 | %sigma | %merr | Kepo par5.fi75 | %sigma | %merr
3301 i1 08| 159 3,301 39| =28
par7.fi75 | %sigma | %merr | Kepo par7.fi75 | %sigma | %merr
3301 32.9 6.3 24.3 3301 18.9 -16.4
par8.fi75 | %sigma | %merr | Kepo par8.fi75 | %sigma | %merr
7-30_1 9.2 1.1 21.1 7-30-1 17.0 -10.9
par9.fi75 | %sigma | %merr | Kepo par9.fi75 | %sigma | %merr
8301 3.2 -1.3 0.7 8301 3.1 2.2
pard fi75 | %sigma | %merr | Kepo pard fiT5 | %sigma | %merr
8301 2.5 -0.0 5.4 8301 8.8 1.3
elong.fi75 | %sigma | %merr | Kepo elong.fi75 | Y%sigma | %merr
9201 6.1 -0.1 214 9301 11.8 10.7
9.30_1 6.1 1.3 21.7 9201 9.0 10.7
tear.fits | %sigma | %merr | Kepo tear.fi7h | %sigma | %merr
71 12.6 6.6 11.3 7-30-1 20.3 -0.2
7-30_1 10.1 2.4 11.3 7-10-10-1 18.9 -0.9
7.10.10_1 94 0.9 114 71 15.3 7.1
tensile.fi75 | %sigma | %merr | Kepo tensile.fi7s | %sigma | %merr
8.1 12.8 -7.9 12.1 8.1 17.0 4.8
8.10.10-1 8.5 1.3 11.5 8301 14.5 -6.1
8.30-1 7.2 -0.1 10.9 8.10.10-1 14.4 -4.4
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Appendix E : Non Significant and Lab Data Inputs Removed

Train set Test set

cst | %sigma | %merr | Kepo csf | %sigma | Y%merr

pard 12.3 -0.2 7.8 parl 14.9 0.1

par3 9.7 1.6 7.8 par3 14.4 0.2

par8 8.9 0.2 7.8 par4 13.9 -0.8

par? 8.4 2.3 7.8 par9 13.6 -0.7

parl 7.6 1.4 7.8 par8 13.6 -0.3

par4 7.1 -1.2 7.8 — 13.5 -0.5

par9 6.8 0.3 7.8 par? 13.4 04

— 6.6 0.1 7.8 pard 11.5 2.5

parl | %sigma | %merr | Kepo parl | %sigma | %merr

par4 51.8 -22.4 13.1 par4 33.7 9.2

par3 36.1 10.2 | 13.1 — 31.8 11.8

par? 34.5 5.4 13.1 par9 31.0 10.2

par8 33.2 -3.9 13.1 par3 30.0 21.8

par9 331 -12| 131 par5 295 | 146

par5 321 -3.0| 131 par7 284 | 189

— 31.3 -3.6 13.1 par8 28.2 11.5
density | %sigma | %merr | Kepo density | %sigma | %merr
par9 12.0 3.2 11.4 par9 16.4 8.6
par4 11.5 84| 114 par? 15.8 17.0
parl 10.7 0.6 11.4 par3 15.6 9.0
par? 9.8 5.8 11.4 parb 15.5 9.0
par8 9.0 00| 114 — 15.1 10.5
par3 8.5 0.7 114 par8 14.8 10.3
pard 8.4 0.3 114 pard 12.7 16.1

— 7.5 -0.1 114 parl 12.7 6.8
elongation | %sigma | %merr | Kepo elongation | %sigma | %merr
par3 37.9 -13.9 | 12.7 par? 17.1 14.3
par4 23.2 1.0 | 127 par3 16.1 20.2
par7 22.0 -5.6 | 12.7 par4 10.7 21.7
par8 10.4 -1.6 | 127 parl 8.6 5.9
parl 8.3 -2.1 12.7 par8 8.5 3.5
par9 8.2 -0.1 12.7 — 8.2 5.7
parh 8.2 -0.6 | 12.7 par9 8.0 5.0
— 7.1 -0.5 | 12.7 parb 7.9 5.5
par3 | %sigma | %merr | Kepo par3 | %sigma | %merr

par? 44.6 -37.2 5.7 par4 35.0 16.3

par4 40.2 -16.2 5.7 par9 19.9 3.8

par9 17.6 6.0 5.7 par? 18.3 -7.4

parl 5.8 -1.1 5.7 par8 4.8 2.2

— 5.6 -0.5 5.7 — 4.7 2.1

par8 5.4 -0.5 5.7 parl 4.7 2.2
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Train set
pard | %sigma | %merr | Kepo
par8 5.4 1.5 2.2
par3 4.4 1.6 2.2
parl 4.3 1.6 2.2
par4 4.3 1.2 2.2
par9 4.3 1.6 2.2
— 4.3 1.5 2.2
par7 | %sigma | %merr | Kepo
par4 43.3 26.4 9.1
par3 41.0 20.0 9.1
par8 35.2 4.0 9.1
parl 34.5 14| 91
par9 32.9 3.6 9.1
pard 32.1 1.2 9.1
— 32.1 0.9 9.1
par8 Y%sigma, | %merr | Kepo
par4 18.0 9.2 8.3
par5 15.1 51| 83
par3 144 3.4 8.3
par? 13.7 7.3 8.3
par9 13.4 4.5 8.3
parl 13.3 11.2 8.3
density 10.7 4.3 8.3
— 9.9 5.2 8.3
par9 | %sigma | %merr | Kepo
pard 8.3 -1.6 1.0
par3 5.3 04| 1.0
par8 3.3 04| 1.0
parl 3.1 04| 1.0
par7 3.1 -0.4 1.0
pard 3.0 -0.4 1.0
— 3.0 -0.5 1.0
par4d | %sigma | %merr | Kepo
par3 38.0 0.7 118
par9 27.6 7.9 11.8
par7 26.5 -31.4 11.8
par8 7.7 0.0 11.8
parl 7.3 -1.0 11.8
pard 7.3 -0.1 11.8
— 6.8 0.6 11.8

Test set
par5 | %sigma | %merr
par8 4.5 -0.8
pard 3.7 -0.2
— 3.0 -0.8
par3 2.9 -1.1
parl 2.8 -1.1
par9 2.5 -1.2
par7 | %sigma | %merr
pard 12.9 -10.6
— 10.5 -9.9
par8 10.3 -9.9
par9 10.1 -9.3
parl 8.7 -9.6
pard 6.2 -7.4
par3 4.5 -8.2
par8 Y%sigma, | %merr
par7 18.6 -3.5
parb 15.8 0.1
— 12.8 -2.6
par4 12.1 -4.0
density 10.5 -1.7
par3 9.5 0.3
par9 94 2.6
parl 6.6 3.1
par9 | %sigma | %merr
pard 7.9 7.2
par3 3.7 14
parl 3.3 3.3
pard 3.2 3.4
— 3.2 3.3
par7 3.1 3.1
par8 2.9 3.4
par4d | %sigma | %merr
par9 23.0 1.7
par7 22.8 -26.8
par3 19.0 -1.8
— 11.5 9.5
pard 10.9 9.9
par8 10.2 8.7
parl 6.8 5.4
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Train set
tear | %sigma | %merr | Kepo
pard 277 21| 152
par3 20.8 -8.7 15.2
par9 19.5 -5.6 15.2
par7 13.2 -4.0 15.2
parl 131 -48| 152
par5 126 | -12| 152
par8 11.1 1.0 15.2
— 9.7 -0.1 15.2
tensile | %sigma | %merr | Kepo
par4 24.8 48 | 139
par3 22.6 -4.3 | 139
parl 10.6 3.6 13.9
par? 9.5 0.2 13.9
par8 9.3 0.2 13.9
— 8.1 -0.1 13.9

Test set
tear | %sigma | %merr
par3 30.2 1.8
par9 29.0 0.6
pard 21.2 -14.5
par7 20.3 5.1
par8 17.5 1.1
— 16.3 2.6
parl 15.5 -0.3
pard 13.4 7.9
tensile | %sigma | %merr
par4 26.0 -17.4
parl 16.1 -6.1
— 15.5 -7.1
par7 154 -4.3
par8 15.1 -6.7
par3 13.6 3.9
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Appendix F : Continuous

learning

VII: APPENDIX

CSF

csf

arch %sigma | %merr | maxerr

7101 155 | 08| -138.6

7.1 154 | -3.1| -143.1

7.10.101 44| -05| -1265

7.20_1 12.5 00| -104.9 | ==

7.30_1 11.9| -0.8|-1003| ,,

° o5 o4 ﬁo‘z r o o2 o4 os °s 5 /\m is 2o 25
DENSITY

density

arch %sigma | %merr | maxerr

71021 17.7 1.1 -57.6

7-10-10-1 17.1 7.1 71.2

7301 14.5 4.8 52.2 550

71 14.4 7.0 50.3

7201 13.9 2.6 48.4 50

Upper Left: Performance for different architechtures. Upper Right: Best plot of target
and prediction. Lower Left: Error distribution. Lower Right: Iterations to relearn.
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ELONGATION

7.5 T
"stretch.fi75.7_20_1-.test.targ —<—
7L "stretch.fi75.7_20_1-.test.out’ —+- |
N 6.5
elongation
arch %sigma | %merr | maxerr

71 14.1 13.8 0.8
7101 8.4 3.9 0.4
7.10.10-1 8.3 0.6 -0.3 e
7301 8.2 5.9 0.4 o
7-20_1 8.0 2.3 0.4 ser

sl
‘
0 5 10 15 20 25
. : : : cao000 :
T eren ti78. 7200 vomt et o etreren f175 720t tem e o
ol |
sao000 |
-, . |
ol 1 sooo00 |-
ol |
sao000 |
ol |
ol 1 200000 |-
.l |
200000 |
.1 |
. . . . ‘ ‘ ‘ . . .
N ST S R N o : % P % P
,
‘tear.fi75.7_10_1-.test.targ -—
8L ‘tear.fi75.7_10_1-.test.out’ —- |
17 +
tear
arch %sigma | %merr | maxerr

7201 16.8 -1.7 -1.7
7301 15.2 -0.7 -1.7
7.10.10-1 14.3 1.7 -1.5
7101 12.3 0.2 -1.1
71 12.0 2.8 1.1

900000

fear. i 75 7_10_1-.test.edist’ —o— ‘tear.fi75.7_10_1-.test.iter’ —o—

800000
700000 |
600000 |
4r b 500000 |
400000
300000 |
200000 |

100000 |

o . L L L L L ° L2
-0.6 -0.4a -0.2 o 0.2 0.4 0.6 o 5 10 15 20 25

Upper Left: Performance for different architechtures. Upper Right: Best plot of target
and prediction. Lower Left: Error distribution. Lower Right: Iterations to relearn.
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TENSILE

95 '|ensi|e.fi7‘5. 771071071-v|e‘st.|arg' P
"tensile. fi75.7_10_10_1-.test.out’ -+-
90
tensile s
arch %sigma | %merr | maxerr
71 26.1 -4.4 11.2
7-20_1 17.6 -3.6 12.8
7-.30_1 15.9 -2.9 8.8 F
7-10-1 15.2 -4.0 8.1 60 -
7-10-10_1 14.3 -3.3 -7.4 ss |
50 L L L L
0 5 10 15 20 25
okl 1757 10 10 1 test emat e | Ctensile. fi75.7_10_10_1 . test.iter ——
600000
s |
500000
ir ﬂ 7 100000 |
o . . . . . . o . . . .
“o’s 0% 0.2 o 0.2 0.4 o6 o s 10 15 20 25

Upper Left: Performance for different architechtures. Upper Right: Best plot of target
and prediction. Lower Left: Error distribution. Lower Right: Iterations to relearn.
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Appendix G : Continuous learning
TEAR 7_1

18 ‘tear.fi46.7_1-.test.targ’ —— -
. 17 ‘tear.fi46.7_1-.test.out’ —+— |
tear %0err | Yomerr | maxerr | 1-Zgrr 7
sig
7101 28.3 -9.9 -4.1 | -0.31
7301 19.1 -3.8 -3.7 0.40
7-10-10-1 18.3 -1.1 -2.1 0.45
7-20_1 18.2 -0.8 -3.8 0.46
71 14.1 0.2 -1.8 0.67 10 1
0O 10 20 30 40 50 60 70 80 90 100
25 ; ; ; o ; ; 200000
—— 180000 |, Metermman pms™ q
20 g 160000 [ 1
140000 1
15 E 120000 4
100000 4
10 1 80000 1
60000 | 4
5t E 40000 | 4
20000 | 1
‘ N ‘ ‘ ‘ o P S
-0.6 -04 -02 0 02 04 06 0O 10 20 30 40 50 60 70 80 90 100
18 + ‘tear.fi46.7_10_1-.test.targ’ —— -
17 | ‘tear.fi46.7_10_1-.test.out’ -+ |
0 10 20 30 40 50 60 70 80 90 100
35 ; ; ; ; ; ; 120000
30 ] 100000 | 1
25 80000 1
20
60000 | 4
15 E
10 | | 40000 4
o} ; ‘ ; ; ; o]
-0.6 -04 -02 0 02 04 06 0O 10 20 30 40 50 60 70 80 90 100

Upper Left: Performance table for tear on different architechtures. The table shows stan-
dard deviation for the error expressed as percentage of the range of tear. The same for
the average error in percent. “maxerr” is the maximal error in engineering units. The

Terr »
2

measure “1 —

relates the distribution of the error with the distribution of the signal.

sig
Upper Right: Plot of target and prediction. Lower Left: Error distribution. Lower Right:
Iterations to relearn.
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TEAR 7201

18 ‘tear.fi46.7_20_1-.test.targ’ —— -
17 b ‘tear.fi46.7_20_1-.test.out’ —+--

0 10 20 30 40 50 60 70 80 90 100

25 . . . — . . 160000 :
i - 140000 |- -
20 1 | 120000 + 1
15 i 100000 | 4
80000 | 4
10 1 60000 | g
s | | 40000 1
20000 | 4

o . 2 ‘ ‘ o
-0.6 -04 -02 0 02 04 06 0 10 20 30 40 50 60 70 80 90 100

18 + tear.fi46.7_30_1-test.targ’ —— -
17 | ¢ 'tear.fi46.7_30_1-.test.out’ -+ |

16 b J

10} 1
i

0 10 20 30 40 50 60 70 80 90 100

30 : : : : : : 160000 :
25 | | 140000 |- 1
120000 |- 1
20 ¢ 1 100000 | 1
15 | 1 80000 | 1
10| | 60000 | 1
40000 | 1
5r 1 20000 | 1
o) s i3 s s s 0 n
06 04 02 0 02 04 0.6 0 10 20 30 40 50 60 70 80 90 100

Upper Right: Plot of target and prediction. Lower Left: Error distribution. Lower
Right: Iterations to relearn.
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TEAR 7.10.10_1

18 r ‘tear.fi46.7_10_10_1-.test.targ’ —— -
17 L 'tear.fi46.7_10_10_1-.test.out’ -+

0 10 20 30 40 50 60 70 80 90 100

300000

250000
200000 L.

r R 150000

100000 A

20
18
16
14
12 + 1
10
8
6
4 50000 | —
2
)

. . . . . o) . . . . . . . . .
-0.6 -0.4 -0.2 o 0.2 04 0.6 O 10 20 30 40 50 60 70 80 90 100

Upper Right: Plot of target and prediction. Lower Left: Error distribution. Lower
Right: Iterations to relearn.
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Appendix H : Continuous learning

tensile %0err | Yomerr | maxerr | 1 ‘;gﬂ
7101 356 -16| 202 -L77
7201 31.4 5.6 32.4 | -1.16
7-.10.10_1 21.6 5.1 14.5 | -0.02
7-30_1 19.8 -13.6 -18.0 | 0.145
71 14.2 -4.7 10.0 | 0.56

30 — :

25 | HR

20 |

15 |

10 |

5 |

06 04 02 0 02 04 06

30 :

25 | -

20 |

15 |

10 |

s |

-0.6 -0.4 -0.2 o

Upper Left: Performance table for tensile on different

0.2 04 0.6

95
90
85
80

75 A

70
65
60
55

50 t

200000
180000

160000 [ 1

140000
120000
100000

80000

60000
40000
20000 r

[0}

95
90
85

50 t

180000
160000
140000
120000
100000
80000
60000
40000
20000
(o)

TENSILE 7_1

: ‘tensile.fi46.7_1-.test.targ’ ——
‘tensile.fi46.7_1-.test.out’
0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100
| ‘tensile.fi46.7_10_1-testtarg’ —~— |
r ’teﬁ§§le.fi46.7_10_1-.test.out’ e
oo
0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100

architechtures.

The table shows

standard deviation for the error expressed as percentage of the range of tensile. The same
for the average error in percent. “maxerr” is the maximal error in engineering units. The

Terr »
2

measure “1 —

relates the distribution of the error with the distribution of the signal.

Upper Right: Plot of target and prediction. Lower Left: Error distribution. Lower Right:

Iterations to relearn.
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TENSILE 7_20_1

95 F T T T T T r . .
90 ‘terisile.fi46.7_20_1-.test.targ’ ——
| sile.fi46.7_20_1-.test.out’ ——

50 t

0 10 20 30 40 50 60 70 80 90 100

30 . . — . . . 160000 — — — .
25 | - ] 140000 + - A
120000 + 1
20 ¢ ] 100000 + ,
15 , 80000 1
10 | | 60000 1
40000 |+ 1
57 ] 20000 r ,

. o T3 [o) 7\

-06 -04 -02 0O 02 04 06 0O 10 20 30 40 50 60 70 80 90 100

90 | ‘tensile.fi46.7_30_1-.test.targ’ —~— |
'tensile.fi46.7_30_1-.test.out’ -+

50

0 10 20 30 40 50 60 70 80 90 100

18 ‘ ‘ ‘ ‘ : : 180000 -

16 | M — 160000 | —
14 | 1 140000 | 1
12 1 120000 | 1
10 1 100000 | 1
8| 1 80000 1
6| 1 60000 1
4t 1 40000 | 1
2t 1 20000 1
0 - ‘ ‘ ‘ ‘ ‘ o ‘

06 -04 -02 0O 02 04 06 0 10 20 30 40 50 60 70 80 90 100

Upper Right: Plot of target and prediction. Lower Left: Error distribution. Lower
Right: Iterations to relearn.
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25
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Appendix I : Fixed learning

2

tear.fi46 %0err | Y%omerr | maxerr 1-Zgen
710101 | 39.7| 28| 49| -L6(
7201 35.7 4.8 -4.2 | -1.10
71 32.8 -1.6 -4.3 | -0.77
7.10.1 31.5 1.6 -39 | -0.64
7401 29.6 8.3 3.5 | -045
7301 29.5 8.2 -3.6 | -0.44
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Upper Left: Performance table for tear on different architechtures. The table shows stan-

dard deviation for the error expressed as percentage of the range of tear. The same for the

average error in percent. “maxerr” is the maximal error in engineering units. The measure
2

“1—

‘;‘;%” relates the distribution of the error to the distribution of the signal. Upper Right:

sig
Error distribution for test set. Lower Left: Plot of train target and output. Lower Right:

Plot of test target and output.
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Upper Right: Error distribution for test set. Lower Left: Plot of train target and
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Appendix J : Fixed learning

tensile.fid6 | %oerr | %omerr | maxerr | 1- %%mz
7-10.101 45.8 8.1 29.5 | -3.6
7201 29.2 2.5 26.0 | -0.88
71 25.2 0.2 14.8 | -0.41
7101 24.6 -24 24.7 | -0.33
7-30_1 24.4 -0.3 20.7 | -0.32
7401 21.8 -2.9 17.2 | -0.05
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Upper Left: Performance table for tensile on different architechtures. The table shows

standard deviation for the error expressed as percentage of the range of tensile. The same

for the average error in percent. “maxerr” is the maximal error in engineering units. The
2

measure

“1— %” relates the distribution of the error to the distribution of the signal.

Upper Right: Error distribution for test set. Lower Left: Plot of train target and output.

Lower Right: Plot of test target and output.
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Upper Right: Error distribution for test set. Lower Left: Plot of train target and
output. Lower Right: Plot of test target and output.
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Upper Right: Error distribution for test set. Lower Left: Plot of train target and
output. Lower Right: Plot of test target and output.
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Appendix K : Input value statistics

absrange | sigma% | sigma/mean%
tear 4.9 21.7 7.9
tensile 23.9 19.5 6.3
parl 6 314 76.2
pard 16.7 19.7 8.9
par7 30.9 39.7 57.0
par8 112 21.4 7.6
par9 24.0 19.3 7.9
par3 100 42.2 183.3
par4 100 47.6 72.4

This table shows some statistics for the training data. What is shown here is the
rangesize (absrange), i.e., the difference between min and max value of a signal;
the standarddeviation in percent (sigmaZ%) of the rangesize and the standardde-
viation divided by the expectation value (sigma/mean). The value sigma/mean is
expressed in percent just to give nice numbers, i.e. , it is just multiplied with 100.



