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Abstract

An international database of case reports, each one describing a possible case of
adverse drug reactions (ADRs), is maintained by the Uppsala Monitoring Centre
(UMC), for the WHO international program on drug safety monitoring. Each report
can be seen as a row in a data matrix and consists of a number of variables, like
drugs used, ADRs, and other patient data. The problem is to examine the database
and find significant dependencies which might be signals of potentially important
ADRs , to be investigated by clinical experts. We propose a method by which es-
timated frequencies of combinations of variables are compared with the frequencies
that would be predicted assuming there were no dependencies. The estimates of
significance are obtained with a Bayesian approach via the variance of posterior
probability distributions. The posterior is obtained by fusing a prior distribution
(Dirichlet of dimension 27~!) with a batch of data, which is also the prior used when
the next batch of data arrives. To decide whether the joint probabilities of events
are different from what would follow from the independence assumption, the “in-
formation component” log(P;;/(P;P;)) plays a crucial role, and one main technical
contribution reported here is an efficient method to estimate this measure, as well
as the variance of its posterior distribution, for large data matrices. The method we
present is fundamentally an artificial neural network denoted Bayesian Confidence
Propagation Neural Network (BCPNN). We also demonstrate an efficient way of
finding complex dependencies. The method is now (autumn 1998) being routinely
used to produce warning signals on new unexpected ADR associations .
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1 Introduction

The fundamental aim is to find new unexpected dependencies between variables
in a database. The database, which this methodology has been implemented on,
consists of case reports of adverse drug reactions, reported from 50 WHO col-
laborating national centres. This database currently contains nearly two million
reports, in each report more than 77 variable fields may be considered for anal-
ysis.

The database is updated quarterly with approximately 35000 reports. Primarily
we want to find new unexpected associations in the data set occurring due to
this quarterly update of the database. Initially between drugs or combinations
of drugs and adverse reactions or combinations of adverse reactions, but also
including other variables like country and patient age.

For this purpose we have extended a Bayesian neural network [LE89], [HL95] to
be able to do estimations of variances of weights and posterior distributions to
be suitable for data mining. The Bayesian neural network we use here is a feed
forward network ! where the learning and inference rules are based upon Bayes
rule [Bay63] ,[Lapl4] for conditional probabilities. We want to find the posterior
probability function for an outcome or response variable A which is conditioned
by a joint input event or explanatory variable D under the assumption that we
can express the joint likelihood density P(D|A) as a product of n independent
marginal densities P(d;|A) as
P(D[A)

P(AID) = P(4) 55 = P(4)

P(e|4) - Pdi|A) - P(dnld) ),
P(D) '

The outcome A may in general be represented by a continuous distribution,
but here we deal with discrete outcomes. In the following A means the set of
mutually exclusive outcomes ay, a;, . . ., a,,. We use the symbol “A” as this often
represents adverse drug reactions or a combinations thereof in our application.
The input events d; most often represents drugs or combinations of drugs. Such
a network is fundamentally a naive Bayesian classifier [Goo50] but it has earlier
been extended with higher order units that deals with classification and diag-
nosis also for tasks involving dependent inputs [LH96|, where it was denoted

1 it has also been used as a recurrent Hopfield-like network useful for pattern com-

pletion [LE85],[LE89],[Kon89]



BCPNN (Bayesian Confidence Propagation Neural Network). Here we extend
the latter by calculating also the variance

v(Fer) =V (7ari) )

which is a particularly useful measure, for instance, when we do data mining,
particularly on associations with low frequency counts, where the uncertainty
may be large. Similarly we calculate V' (P(a;|D)), the variance for a posterior
probability, which gives us a confidence measure of a prediction or classification
task. Following established practice in the area of Bayesian neural networks,
we use E(P(A|D)), V(P(A|D)), etc to denote the mean and variance of the
posterior distributions of P(A|D).

The Bayesian feed forward neural networks have similarities to Bayesian Belief
Networks [Pea88] and they can theoretically be transformed into each other
[HL95]. The main difference is that in the latter only the dependent variables are
dealt with in each node, whereas in the neural network model both dependent
and independent variables are treated in parallel and the result is propagated
through a few layers only.

1.1 Bayesian Inference in BCPNN

Let the response variable A be composed of m mutual exclusive outcome events
a;. Bayes rule gives the following relation

P(a;)P(Dla;)  P(a;)P(D|ay)

PaiD) ===y = %, Pla,)P(Dlay) 3)

Then, let the joint explanatory event D be composed of n independent events
d;, such that
P(Dla;) = P(di|a;) - P(ds|ay) - - - P(dylay).

Each event d; is further made up of K; mutually exclusive sub-events, or states,
such that
P(d;|a;) = P(d}|aj) + P(dZ|a;) - - - P(d;"|ay).
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These assumptions, i.e. P(d¥|a;) being independent over i and mutual exclusive
over k gives

P(Dlay) HZP (d¥|a;), (4)

which, using Bayes rule, can be rewritten as

P(Dla;) HZ

“J'd (). (5)

Now, replace P(a]|dk) above with ((’d’,f; ) = aJ ’d ) (definition) and P(d¥) with

its belief value 7F, which expresses the current behef on event d¥ during training
and inference in an ezhaustive Way, i.e. [’ﬂ'dk > 0,8 =Kizk = 1]. A binary
variable is thus represented by one “on-unit” and one “off-unit”. We get

P(Dlay) HZ ”)) k. (6)

which we generally consider approximately valid also when P(d¥|a;) are almost
independent over i. Using equation (6), equation (3) can now be written

P(a;|D) x P(a; HZ PCZ]))W;C’ (7)

which resembles many feed forward artificial neural network architectures. For
discrete belief values (74 € {0,1}) we may use the following simplified form

P(a;|D) xexp |log P(a;) + Z > log [%] de] : (8)

In the last expression (8) we would recognize “exp” as the transfer function and

“log P(A)” as a bias term from other artificial neural network architectures.
(d
(df

| as in (7). Which equation to prefer depends on the application. For

The correspondlng weight value is then either [log - ] as in (8) or just

[P(df )P(A)
precise mixture modelling of e.g. continuous variables [OL96] preferably (7) be
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used, due to the better accuracy, rather than (8). The logarithmic form in (8)
has been used a lot in e.g. recurrent networks [LE89] and also in classifica-
tion [HL95]. In the data mining application described here and in [BLET 98]
we use the logarithmic form, as this has a nice connection with information
theory, especially mutual information [Pea88]. Therefore we refer to the term
P(dF,A) . . .- .
[log W] as information component because it is a measure of the informa-
tion that migrates from one state of a variable to one state of another variable.
Mutual information in its discrete form can then be regarded as a weighted sum

of information components,

1(X;7) =% P(z,y) log %.

)

In the rest of this paper we use the following definitions of the weights and infor-
mation components (observe that index k is assumed but not always included
throughout this text):

P(d¥,a )
W= —— 2 I 10
1= PPl 1o
1C;; =log W;;. (11)

2 Method to estimate probabilities and uncertainties

We start by estimating the probability for a single binary event of a Bernoulli
trial represented by a variable with outcomes 0 and 1. The likelihood function for
c1, i.e. the probability to get ¢; number of outcome 1 from a total of C' = ¢y+ ¢
trials, is a binomial distribution:

Plalp,0) = (§) s (1= p)™. (12)

In the classical perspective we get the maximum of the likelihood by differenti-
ating vs p; and solve d%lP(cl Ip1) =0 as

01(1 —p1) = CoP1
O & T & |

pl_Co—i‘Cl_C.

(13)



This classical estimate does, however, not give us accurate estimates of p; for
small counter values and does not tell us anything about the significance of an
estimated probability. To overcome this we use the Bayesian method to assert
an a priori probability distribution for the variable, which is refined when more
information i.e. samples, become available. We consider p; to be drawn from
a conjugate family of distributions, which we assert as the prior distribution.
A convenient prior which is much used if we do not expect the input to be
a multi modal mixture [BS94],[Hec97] is the Beta distribution, described by
hyperparameters a; and «q

(o + ap)

FanTag” (7P -

P(p1) =
which gives a posterior for p;, given the counters ¢; and ¢y, which is also a Beta
[BS94]:

F(C + o1 + 010)
F(Cl + Ofl)F(C() + Of())

P(pifer, co) = Pt (1 = py)eteot, (15)

The expectation value p; = F(p;) we get by integration and normalization,
where the reduction makes the I's disappear:

= folpl . p161+a1—1(1 _ p1)60+ao—1dp

) Joprerter—1(1 — py)eoteoidp (16)
The solution to this [where Beta(x,y) = T'(z)['(y)/T(z + y)] is:
)= B o€ T o
which simplified gives the following (o = oy + ag) for py,
p=E(p) = %_:_O(;l- (18)
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In the same way we find the variance estimation (02 = V(p) = E(p*) — E(p)?)
and the estimate of V' (p;) becomes

(Cl+041)(c—61+06—011)

V) = e o+ Cra)

2.1 Joint Probabilities

As a prior for the joint probability p;;, which has four different outcomes, we
assert a 3-dimensional Dirichlet-distribution of pi1, p1o and po1 (poo = 1 — p11 —
P1o—Po1) in the hyperparameters 71, Y10, Yo1, Yoo- Consider e.g. the distribution
of Py [P(p11)]:

P(p11) = Di(p11|711, Y10, Yo1, Yo0) (20)
(711 + 710 + Yo1 + Yo00) 1 1 1 L
— P 711 P Y10 P o1 1_p —P1g—p 7001
T (71T (710)T (Y1) T (700 11 10 01 ( 11—P10—Po1)
The marginal distributions to Dirichlet are also Dirichlet but in this case they
reduce to a one dimensional Dirichlet which is a Beta (14). The posterior distri-
bution given the counters c¢;1, €10, Co1, Coo 1S also a Dirichlet distribution [BS94]:

P(p11|c11, co, o1, Coo) = Di(pr1|ci1 + 711, €10 + Y10, Co1 + Vo1, Coo + Yo00)-

The expectation value F(p;;) thus becomes:

_ fol f01 fo1 pu1Di(pi1]eir + 711, 1o + Y105 Co1 + o1, Coo + Yoo)dPo1dp1odpi1
fol fol fol Di(p11|e11 + Y11, €10 + Y10, Co1 + Vo1, Coo + Yoo)@Po1dp10dpi11

E(pn)

The evaluation of this integral involves some hyper-geometric functions and is a
bit cumbersome and we skip the details here. These expectation values can also
be looked up in a statistical textbook like [BS94]. We end up with the following:

Ci1 + 711 _cnt+7n
c11 + 711 + c10 + Y10 + co1 + Yo1 + coo + Yoo C+y

E(pn) = (21)

and for the variance (observe similarity with (18,19))
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V(pn) = E(pn)(1 — E(pu1))
I+ c11 + 711 + c10 + 710 + o1 + Vo1 + oo + Yoo
(e + ) C+y = — 1)
B C+7)21+C+7v)

(22)

2.2  Weights and Information Components

In our first attempt to find the expectation values for the weights [E(W;;) =

E(ﬁf—,)] and their variances we tried the same approach as above by using the
iPj

integral:

111

P P10 pei ™ (1 = pi = pio — por)"™ !
/// : ) dp11dprodpor.  (23)
000

p11 +p10)’Y11+710 2(p11 + p01)711+701 -2

We could, however, not find any closed form solution to this, which would
still not have taken into account any cross dependencies. Instead the following
approximation is used, utilizing (18),(21) above, where o and 8 are the number
of mutually exclusive events in each class for the variables i and j respectively

E(py) _ (¢ +7%)(C+ a)(C+B)
E@)E®P;)  (C+7)(ci+ai)(c;+8;)

For the specific case of the ICj; this can, however be calculated exactly, due to

E(ICy;) = E(log ppz ) = E(logpi;) — E(logpi) — E(log p;) (25)
.4

and it can be shown [KO98] that when p is Beta(a, b) distributed, then

> 1
—b- .
ala + nzl (a+n)-(a+b+n)

E(logp) = (26)

Here a = a1 + ¢; and b = ay + ¢o. In the application work we present here
we have, however, used the following simplified form for the expectation value

E(I1C;)



E(p,.
E(ICy) »log E(Wyy) ~ log - (p;) (27)

(Pi)E(ps)
The variance for the weight [V (Wy;) = E(W;5) — E(W;;)?] is harder to estimate.

So far we have used the Gauss’ approximation for the variance of a function ¢.e.

VIig(Xy,..., Xp)] =Xk, V(Xi)(g—,i)Q, and not included covariant terms.

We assume symmetrical distributions, therefore we set p; = E(X;). The variance
for the weight V' (W;;) then is

V(p”) ﬁ2 V(pi) n ﬁ%V(Pj)

V(W)= ——2- + —= —— 28
(W)~ PP pip? P; (28)
_(C+ @)*(C + B)(cij + 7ij) (29)

T (CH7)2(ci + 5)?(cj + B)?

(C—cij+7v—j)  (cij+7)(C—ci+a—a;) (cij+7i5)(C —c;+6—Bj)
(1+C+7) (ci + o) (C+a+1) (c; +B:)(C+B+1)

For the information component IC;; we can, due to the properties of the log-
function as in (25) and in [KO98] write the variance V(IC;;) as an exact ex-
pression (here including covariant terms):

V(ICy) =V (logpi;) + V (log pi;) + V (log pi;) (30)
—2cov(log pij, log p;) — 2cov(log psj,log pj) + 2cov(log pi, log p;)

and it can be proved [KO98] that for p being Beta(a, b) distributed, then

> 62 —|— 2ab + 2bn
Vv
(logp) Z ) (@+b+n)?

n—O

(31)

For V(IC;;) we intend using expression(30) with covariant terms in the future.
Although we are still using the simpler approach with Gaussian approximation,
assuming independence:

V(ICy) ~V(py) (pi) V() (;%) V() (i1)2 . (32)
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Here we measure the IC;; in bits (i.e. use log,), which gives the following explicit
expression

C—Cij-i-’)/—’)’ij C—c+a—o " C—Cj-i-ﬁ—,@i
o) 1+ C+7) * (ara)i+C+a) ' (G A)A+C+)
(log 2)*

V(ICy) ~ L (33)

2.8  Variance of Conditioned Posterior Distribution

To calculate the variance of P(a;|D), below, we do a logarithmic exponen-
tial transformation, using Gaussian approximation for variance of a function
[V(9(X)) = V(X) - (3£ (E(X)))?] thus V(X) = V(*s¥)~V (log[X]) - B(X)™.

5X
An approximate variance for a sum of independent terms, (38), can then be

calculated using the Gaussian approximation V(¥ ;¢; - X;) & ¥, ¢2 - V(X;).

Let 6(a;|D) below, be the expression after the independence assumption (4).
When 6(a;|D) is scaled by the coefficient 1/x = 1/3;6(a;|D), we obtain the
expression for the posterior P(a;|D), i.e. 3; P(a;|D) = 1. From equations (3)
and (6) we get

iy Plaj)P(Dlaj) — 6(a;|D)  6(a;|D)
PID) = S b(a) P(Dlay) ~ 5, 0(a1D) ~ (4
P(df’aj)
0;="0(a;|D) = P(a;) sz: P(dF)Pla,) ™ (35)

m:ZH(aﬂD). (36)

By using a Taylor expansion the variance V(P (a;|D)) can be approximated as

V(P(a;| D)) ~ (37)

The variance V (k) is zero, due to x being a function of the applied data pattern
only (3). For a similar reason the covariance cov(6;, ) is also zero, as we only
consider d¥ to be a random variable during the training phase of the network.
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In (38), below, we start with V(log[ (a;|D)]). We set [W] Ze ,?k’“ﬂ) ] in (39)

and consider log[P(a;)] and }-, W, 7Tdk to be 1ndependent in (40) A logamthmlc
variance transformation is performed from (40) to (41). The my; represents
part of a mixture of k belief values, which are here coefficients onlzy, without a
variance. As ’ﬂ'dk is part of a mixture [>, Mgk = 1] it is reasonable to assume

that 2 - Yy mimicov(W, W) < 0. The Gaussian approximation for a sum of

independent variables will then be a worst case estimate of (41), which results
in the inequality (42).

V(lglo(esl D))=V (gl Pla)] + ¥ tog [; i) e
=V <log[P(aj)] + Z log [zkj W - WD (39)
st m(log suin])

V (log[P(a;)]) + 3 V(2 i"ﬂdk)Q (41)
, E(zk § )
<Wk>

v

V (log[P(ay)] Z de
i E (zk gt

When we know that 7 represents k mutually exclusive discrete inputs, then we
can rewrite (40) as (43), because Y, is then a sum over one single value only,
as all other values are zero. Therefore we can move ), and mgr outside the

variance expression, which is done in (44). The [log Wk] we have earlier named

the information component [I Cg] (10) and for that we have an exact variance
expression (30) and for V (log[P(a;)]) as well (31), which gives equation (45).

V (log[(a;| D)]) ~ V (log[P(ay)]) + Z 4 (Z log [W] - wdg,e) (43)
V (log[P(a;)]) + z Z V (log [Wh]) - mae (44)

V (log[P(aj)]) + Z Z 1% (IC’fj) LTk (45)
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Using either (42) or (45), depending on the type of input events, we can calculate
V (log(f(a;|D))). The variance V (6(a;|D)) thus becomes

V(6(a;|D)) = V (exp(log [0(a;|D)])) ~ V (log 8(a;| D)) - E(6(a;|D))*. (46)

The expression (37) for the variance V(P(a;|D)) can thus be written

E(6(a;|D))?

(47)

2.4 The Selection of Reasonable Priors

The priors for p; and p; are not critical as the convergence to the “real proba-
bility” is rather quick [BS94]. The most simple prior for a binary variable to use
here is @1 = ag = 1, i.e. a non-informative (sometimes called ignorant prior)
[BS94], which corresponds to an a priori assumption about equal probability dis-
tribution. We should, however, be aware that for a non binary discrete variable
with k states, we need another prior where each specific state of the variable is
considered. We could then assert for example a; = 1,0 = k-oy; 5 = 1, 8 = [- ;.
To get a coherent prior for p;; we would then set v;; = 1,7 = o - 5. We have,
however, chosen to make a slight drawback from the coherence criterion and
instead chosen a prior for p;; that behaves well for small counter values in the
way that when we have no data samples of pairs of variables we consider them
to be independent (48) and then choose the prior for p;; so that (49) is fulfilled.

. Dij
lim IC;; =log—— =0 48
ciciscij =0 8 pip; (4)
A Cij+%ij
lim ICy =log 2L = log—SX2 ~ 0. (49)
¢ij,C—0 pipj Dipj

Then we can set v;; =1 and v = z%%

In figure 1 we see an example of how this looks when starting with the ignorant
prior and then how the posterior distribution gets more and more narrow when
we add a few samples. In the figure it is also shown how the estimated prior for
the joint distribution P;; look like for some of the first samples.
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Pj=Beta(1,1),E(F)=0.5,V(F])=0.0833 P=Beta(2,3),E(F))=0.4,V(F)=0.04 P{=Beta(2,15),E(F)=0.12,V(F))=0.006
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Fig. 1. Some examples of prior distributions for P(p;) and P(p;;) (briefly P; and
P;j in the diagrams above). The upper diagrams show the priors for P(p;) when
[ap = a1 =1] (¢g = 0,c1 =0); (co =2,c1 = 1) and (cp = 14, ¢1 = 1) respectively.
The lower diagrams show the corresponding estimated priors for P(p11) when
[v11 = 1] c11 = 0,¢11 = 1,¢11 = 1 when both 4, j are defined as above.

3 OTHER METHOD RELATED ISSUES

3.1 Variable Value Coding

The coding of binary and discrete variables into a neural layer representation
is rather straight forward. For a binary variable x we input the values [z, Z].
This is also the simplest example of a hypercolumn, a neural layer with mutually
exclusive input units. When a variable value is missing we may input the a priori
probabilities [p., pz|, alternatively we code it as a default value. Any discrete
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variable, whose values are mutually exclusive is coded in this way. In general
we may input a normalized mixture of belief values instead of the a priori
probabilities for missing values. Real valued variables are coded using such a
mixture of belief values, which represents the degree of membership to a set of
Radial Basis Functions (RBFs). The placement of these RBF's is usually done
using the EM algorithm [Tra93].

3.2  Dependent Variables

Variables which are found to be dependent on each other can be handled by
coding the combination of states for these variables into a separate subspace, a
hypercolumn, a neural layer where all combinations are mutually exclusive. As
an example, assuming that the binary variables X and Y are dependent on each
other, we make a hypercolumn with 4 units representing {Zy, Zy, zy, xy}. When
the number of combinations get large this coding may be inconvenient, then a
reduced coding is used, where only the combinations or features that actually
occur in training data are coded. Real valued variables are handled in a similar
way. The RBF units, which are then used, may combine an arbitrary number of
dimensions into, which can be seen as, a normalized mixture of belief values as
one hypercolumn. The RBF coding is done “before” the treatment of discrete
variables, which is necessary to be able to combine real valued variables with
discrete variables. To find dependencies between variables we use the following
methods (¢ is a threshold parameter):

e Check for strong pairwise mutual information between all pairs of subspaces.
The procedure is repeated to find higher order combinations as long as

Day

PzDy

¢MI < szy log (50)
Ty

e Check all variable combinations up to a certain complexity level in one shot.
To decide what combinations to save we use the Kullback-Leibler distance
between the joint distribution and the marginal distributions. We save those
subspaces where

Okr3... < Pays... log ——— 51
x;: 5 Dby - (51)

e Check all combinations of variables up to a certain complexity level in one

14



run. Save those combinations only, where the information component between
input and output layer is above a certain threshold #;c which is

pacy

zDy

¢rc < log (52)

A comment on the thresholds ¢y , ¢k and ¢;c above: At the moment these
kind of thresholds are considered to be design parameters in the BCPNN net-
work. We have no automatic method for generating the threshold levels yet.

3.8 Sparse Matriz Technique

When working with this huge WHO database, of adverse drug reactions, we
first used full matrixes. We found this to be inefficient because a typical full
connection matrix, containing 20-50 million connection elements often contained
a non zero value in 1-2% of the positions only. Therefore we developed a sparse
matrix technique, which reduced both the required computer time as well as
memory requirements drastically as it does not create matrix elements until
they are needed. The technique is “double sparse” i.e. it allows us to create not
only matrix elements dynamically, but also the “neurons” in the input/output
layers dynamically.

Thanks to this sparse technique and the organization of the database in reports,
where only a very small subset of all possible combinations can occur on each, we
do not need to do the search for dependent variables completely incrementally.
We can decide beforehand how high a complexity level of combinations we want
to investigate.

4 RESULTS AND EXAMPLES

4.1 Signal Generation

In the database application we want to generate an early warning signal when
a certain dependency between a drug or a set of drugs and an adverse drug
reaction (ADR) or a set of ADRs is detected. The procedure is to look for
significant differences in weight values between input and output variables when
a batch of reports is added to the database. To be able to do this in an efficient
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manner from the perspective of computing time and memory 0 we used a sparse
matrix coding of the connection matrix. The procedure was tested on some well
known signals like the association between the drug suprofen and back pain,
and azapropazone-photosensitivity. Results from these time scans are shown in
figure 2...5 respectively.

In these experiments the BCPNN network was set up in the normal way i.e.
C is the total number of reports in the database, ¢; is the number of reports
for the drug, c¢; is the number of reports for the adverse reaction and c¢;; is the
number of reports where the drug and the adverse reaction occur on the same
report.

The diagram in figure 2 shows how the IC (information component) for the
suprofen-back pain association varies between the years 1983 and 1990. The
bars around the IC curve show, for each quarterly year on the x-axis, a 95 %
confidence interval for the IC. The diagram in figure 3 shows how the cumulative
probability function for IC being greater than zero [P(IC > 0) = [°, P,(IC)dy]
develops over time. A case report of acute flank pain after taking 3 doses of
suprofen was first published in 1986 [HMS86].

From the diagrams in figure 2 and figure 3 we can see indications of an asso-
ciation between the drug and the adverse reaction with rather high certainty,
around 80 % after the first quarter 1984, which rises to around 97% in the mid-
dle of 1984, when we would signal it. The current criterion for the detection of
a signal is when the lower 95 % confidence limit of the IC for the drug-ADR
combinations changes from a negative to a positive value on addition of the
data for the last quarter.

For the azapropazone case there was a paper published in 1985 of this drug being
associated with photosensitivity reaction [OBB85]. The diagram in figure 4,
which shows the IC for azapropazone vs photosensitivity reaction, indicates
this association would be highlighted with this approach in 1975. In figure 5 we
see the prior probabilities for the drug and the adverse reaction. Observe that
the scale for the probabilities in this diagram is logarithmic. We also see the
posterior probability for the adverse reaction given the drug. As can be seen
P(A|D) >> P(A), which clearly indicates a conditioned dependency between
the drug and the ADR. All three probabilities are shown with 95% confidence
intervals, but the prior probabilities are much narrower than the conditioned
posterior probability because there are less samples in the joint distribution.
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Fig. 2. A well known signal: supro- Fig. 3. Suprofen and back pain: The di-
fen and back pain. The diagram shows agram shows how the P(IC > 0) devel-
the IC (information component) for the ops over time, we see a clear indication
drug-ADR association. The error bars of this association with 80% certainty al-

show a 95% estimated conf. interval. ready after the first quarter 1984.
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Fig. 4. The development from 1973 to Fig. 5. Logarithmic scale, with 95% conf.

1990 of the information component for int. Priors: P(i) = P(azapropazone),
the drug azapropazone vs the photosen- P(j) = P(photosensitivity). Posterior:
sitivity reaction with 95% conf. int. P(j|i) = P(photosensitivity|azapropazone)

4.2 Digoxin versus Age and Rash

The following experiments aim to demonstrate that IC analysis can be used to
study the relationship between combinations of any variables in the database,
including, but not being restricted to, drug adverse reaction association pairs.
To establish this, the relationship between the drug digoxin and the patient’s
age was examined by observing the change in the IC for the association digoxin-
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rash over different age intervals. Also the strength of association between digoxin
and age intervals was examined for the entire database.

The BCPNN network was here set up to generate counters in a slightly different
manner than previously. C' would normally be the total number of reports in
the database, but in two of these experiments (in figure 8 and 9) it was set as
C=total number of reports within the specific age group under consideration.
The age grouping used here are 10 year intervals. The ¢; is the counter for the
drug or for the drug combined with age. The occurrences of the drug being re-
ported as “suspected” (figure 8) or concomitant medication (“other”) (figure 9)
are counted separately. c;= the number of reports for the adverse reaction or
the adverse reaction combined with age group, and c¢;;=counts the intersection
between c¢; and ¢; in the normal way.

In figure 6 we see a normal time scan of the IC for digoxin versus the adverse
reaction Rash from 1967 to 1997, when the IC has stabilized at a level of —2. The
diagram in figure 8 shows the IC for the database up to the end of 1997, but here
displayed separately for different age groups. In this diagram (figure 8) we see,
for each age interval, that there was a negative IC between digoxin and rash. The
association was most negative for age range 30 - - - 40, although in general there
seemed to be a trend towards lower ICs for higher ages, i.e. less probability for
digoxin to be the suspected drug for causing Rash in elderly patients. However,
the confidence intervals are rather large and the trend is therefore unreliable,
based on the data available at the time. We can also see that the uncertainty
in IC is higher for younger patients, which may be explained by the diagram in
figure 7, where we see how the IC for digoxin vs age varies with the age of the
patient. The diagram of IC vs age in figure 7 shows a clear trend of increasing
IC with age. From a minimum of IC=—4 for 20 - - - 30 year olds (c;; = 34) to a
maximum value of IC=3 (¢;; = 244) for the age group of 90+ year olds. The
highest ¢;; value was for 70 - - - 80 year old patients where (¢;; = 2228) (IC=1.7).
The standard deviations are small for all IC values due to the large number of
reports of digoxin in the database (7370).

In figure 9 the IC between digoxin and Rash within different age groups is shown
when digoxin was not the suspected drug but was reported as concomitant
medication. In the same way as for the results where digoxin was the suspected
drug most digoxin-rash associations had negative ICs , however there was a
definite trend of increasing positive IC for increasing age range, so that for
age groups 70...80, 80...90 and 90+ there was a definite positive association
between digoxin, when recorded as concomitant medication, and rash.
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Fig. 6. A time scan of IC for the drug
digoxin vs the ADR rash from the year
1967 to 1997. At 1997 the IC has stabi-

lized around a level of —2.
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Fig. 8. IC between digoxin and rash for
the last quarter 1997 displayed separate-
ly for each age group, with ten year in-
tervals. The age group “all” sums all in-
tervals.

4.2.1 Discussion
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Fig. 7. Here we see how the association
between digoxin and patient age varies
with the age of the patient. Thus indi-
cating a higher probability to find elder-
ly patients being reported with digoxin
than younger patients.
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Fig. 9. The IC between digoxin and

rash displayed separately for each age
group, last quarter 1997. This concerns
when digoxin was reported as concomi-
tant medication (“other”).

The contrast between digoxin-rash profiles over age for digoxin as a suspected
drug and digoxin as concomitant medication was striking. This is probably be-
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cause when elderly patients are take digoxin they are more likely to be taking
other drugs concomitantly, than a younger person taking digoxin. Therefore
the occurrence of rash as an adverse reaction is more likely to be attributed to
another drug, for elderly patients as compared to younger patients. This exper-
iment shows that the BCPNN methodology can be used to look at associations
when 3 different variables are considered together.

5 SEARCH FOR DEPENDENT VARIABLES

5.1 Goal Description

The BCPNN methodology can be used to search for dependent variable com-
binations of any order. Here we provide an example using this method to data
mine the database to assess the validity of our complex variable method and to
provide an indication of the effectiveness of the methodology in finding combined
variable effects. In this example, a syndrome, which is a group of concurrent
symptoms is investigated. This experiment also shows that the method is com-
putationally tractable.

We considered a known adverse drug reaction syndrome complex association:
Neuroleptic Malignant Syndrome (NMS) which is frequently reported in the
WHO database, and is mainly associated with antipsychotic drugs. The syn-
drome itself is a combination of several symptoms which themselves can be
reported as individual adverse drug reactions. The following adverse reaction-
s were selected as indicators: Creatine Phosphokinase Increased, Fever, Death
and Hypertonia. Although death is an outcome it was included because it is
also a “reportable” term in the adverse reaction terminology.

We are interested therefore in the associations between combinations of these
adverse reactions with haloperidol, an antipsychotic drug known to cause NMS,
and how the strength of the associations with the combinations compare with
the strength of associations with the adverse reactions themselves. Ultimately
we wish to know whether it will be possible to pick the syndrome out, not
knowing the constituent reactions beforehand.
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5.2  Setup of the Experiment

We aimed to investigate all single, pair and triplet combinations of all adverse
reactions in the database and then examine the strength of the association of
each combination with the drug haloperidol. For this purpose we used the sparse
matriz (see 3.3) method which was an appropriate tractable method in this case.
One conventional method to use would be to first scan the database to check all
ADRs against all ADRs, then make a selection of what ADR pairs to consider
based on some threshold. After this the database could be rescanned checking
these selected ADR pairs versus all ADRs again. Then a new selection could be
made by thresholding and these triplets checked versus the drug.

This unsupervised approach works well in finding general feature detectors as
it would, in most cases, find combinations where the Kullback-Leibler distance
between the joint adverse reactions density and the marginal product density

Z p(ADR123) log p(ADR123)

P(ADR:)p(AD Ry)p(ADRy) (53)

would be quite large, but this would not necessarily give us all the reactions we
really want to find, i.e. all combinations where

p(ADR123|d7“ug) >> p(ADngg) (54)

The specification given the sparse BCPNN was to partition the drugs into the
classes “haloperidol”, “other drug” as input layer and make all possible com-
binations of adverse reactions in the output layer, i.e. the output layer will
represent a subset of the power set of all ADRs on each report. The subset we
used here included combinations of up to three ADRs. This would also allow
us the to check e.g. the KL-distance (53) for all ADRs found in the database
at once, which gave us a tremendous speedup compared with the original ma-
trix approach, which took several days on a Sun UltraSparc. The actual search
needed only about 7 hour of computing time on the same UltraSparc. At the
same time we are able to consider all possible combinations of triplets of ADRs
in the database to find those that satisfy: p(ADRo3|drug) >> p(ADR;93).
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5.3 Results

We generated lists of the associations according to the following table:

drug ADR-comb  # ADR comb # IC >0
haloperidol single-ADR 1700 281
haloperidol double-ADR 35000 4019
haloperidol triple-ADR 550000 5388

where the column “# ADR comb” tells us how many combinations that were
found in total. The column “# IC > 0”7 tells us how many of these had a
positive IC. The ones with a positive IC were then sorted on the level of the IC,
i.e. the strength of the association between the drug and the ADR-combination.

As was expected the term NMS was on the top of all these lists. In the pairs
and triplets list NMS was also found to be strongly associated with some of
the other symptoms which are included in the symptom picture of the selected
ADR terms. We also found that the selected ADRs where high on all three
lists. For the single ADR list all four were among the highest 200 IC values.
For the list with ADR pairs combinations of these four ADRs were also found
among the highest 200 IC values, and three of these were in the top ten. For
the list with triple ADRs all combinations with these four ADRs were among
the highest 400 and three combinations were in the top ten.

6 DISCUSSION

This paper presents a new efficient methodology for data mining of large data-
bases in a computationally feasible way. The method not only provides a way to
calculate conditional dependencies and predictive posterior probabilities within
the data, but also estimates of the variances of the corresponding distributions,
which makes this method accurate also for small sample set sizes of the inves-
tigated variables within the data set. Although the method has been demon-
strated on a specific database it is suitable for other data mining applications.

We have made extensive use of the Gaussian approximation formula for the
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variances of functions here. These approximations are best suited for Gaussian
distributions, although here we use Beta and Dirichlet as our model distribution-
s. To allow for this, particularly when the conditional independence assumption
between input variables is not fulfilled, we code the dependent variables into
hypercolumns, that is, partition the input space into mutually exclusive regions.
Further on, to make the calculations simpler, we do not yet consider covariance
terms in the calculations.

Initially it was difficult to do exact calculations of the expectation value and
the variance of the ICj;. It was therefore encouraging to find, as described in
section 2.2 and also in [KO98], that using the logarithmic form of the IC;; we
can express these solutions in an exact analytical way. This is being considered
in ongoing work.

In the results presented in this paper we have propagated probabilities and
calculated the variances of posterior output distributions conditioned on a set
of inputs by approximating the W;;. We expect that the use of the analytical
expression for the ICj; will help us to make a better approximation of W;;.

We intend to investigate the possibility of finding an exact expression for the
conditioned output probability distribution, or at least, its variance. Alterna-
tively we could approximate these variances reasonably by the use of numerical
integration. This would, however, result in a very large increase in the compu-
tational power requirement. This can certainly be done if necessary and we will
consider this approach in the future.

Although the neural network technology we use is not only computationally but
also architecturally efficient other methodological approaches may be similarly
applied to these variance calculations. There are statistical methods being de-
veloped that may do better in approximating the variances like “saddle point
approximations for statistical series” [Kol97], which may be computationally
feasible, but we have not been considered these yet. Our goal is to be able to
propagate complete distributions and for this purpose sampling techniques, like
Gibbs sampling, are often used today. This kind of technique is, however, at
the moment, too computationally demanding to be used in our data mining
application.

We believe that our approach provides a mechanism for earlier and more efficient
signalling of suspected adverse drug reactions. This application is dealt with
in more detail in [BLE98]. The method is now (spring 1998) being used to
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produce warning signals on new unexpected drug adverse reaction associations
when they become significant in the database.
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